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Aging, man-made and natural hazards (e.g., earthquakes and hurricanes) may 

induce significant damage or even cause the collapse of civil structures. Such damage and 

failures imply life and economic losses, and function disruption of critical facilities; 



www.manaraa.com

 

 xxxvi

however, these devastating consequences can be reduced by means of accurate and 

timely risk mitigation decisions taken before and after the damage-inducing event. 

Structural health monitoring (SHM) has emerged as an attractive technology for the 

research and engineering communities to provide tools and protocols aiming to inform 

and prioritize the decision-making process and, therefore, has been accepted as a critical 

tool to achieve sustainable and resilient communities. Condition-based inspection and 

monitoring strategies to assess the residual life, detect any damage and safety threat at the 

earliest possible stage, and prioritize the repair or replacement of critical infrastructure 

are crucial preventive and proactive actions that can be facilitated by the use of advanced 

SHM methodologies. Because of recent advances in computational resources and cost 

reductions in sensor technologies, nowadays, dense and sophisticated sensor networks 

have been deployed and are collecting data for different types of civil structures 

throughout the world. However, current methods and practices in SHM are not achieving 

the goal of supporting the decision-making process. In this regard, two major hurdles are: 

(1) there is still a need to validate current state-of-the-art system identification (SID) and 

damage identification (DID) methods using data recorded from large and complex civil 

structures subjected to real or realistic damage-inducing events (e.g., man-made or 

natural hazards such as earthquakes), and (2) there is a disconnect between the advances 

made in the subfields of SHM and mechanics-based modeling and simulation of 

structures. This dissertation contributes to overcome these two hurdles by (1) analyzing 

vibration data recorded from a full-scale five-story reinforced concrete (RC) building 

fully outfitted with nonstructural components and systems, which was seismically tested 

and subjected to progressive damage on the NEES@UCSD shake table, and (2) 

developing and validating a novel and advanced SHM and DID framework that integrates 

high-fidelity mechanics-based nonlinear finite element (FE) structural modeling and 

analysis with state-of-the-art Bayesian inference methods. 

The first part of this dissertation focuses on SID and dynamic characterization of 

the full-scale five-story RC building specimen. Dynamic data for different sources of 

excitation, including ambient vibration as well as free and forced vibration tests, are used 

to investigate the evolution of the modal properties during construction of the building. 
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Variations of the modal properties of the building, under both fixed-base and base-

isolated configurations, due to the effects of nonstructural components, seismic-induced 

damage, and environmental conditions are explored comprehensively. In the second part 

of the dissertation, a novel framework is developed for system and damage identification 

of nonlinear structural systems subjected to known or unknown inputs. The proposed 

framework is validated using homogeneous and heterogeneous sensor data simulated 

from realistic nonlinear FE models of structures of increasing complexity, including 2D 

and 3D steel and RC frame structures, subjected to seismic excitation. Stochastic 

(Bayesian) filtering methods, including the Unscented Kalman filter and the Extended 

Kalman filter, are used to estimate unknown parameters of the FE model, unknown input 

base excitations, and their estimation uncertainties using spatially-sparse noisy 

measurements. By employing the estimated model parameters and input excitations, the 

updated nonlinear FE model can be interrogated to detect, localize, classify, and assess 

the damage in the structure, and can also be used for damage prognosis purposes. 
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CHAPTER 1 

INTRODUCTION 

1.1.  Background and motivation 

During the last twenty years, the civil engineering community has paid increasing 

attention to developing and adopting solutions for inspection, monitoring, and 

maintenance of civil infrastructure systems. Important life safety and economic benefits 

can be attained by providing information about the condition of a structure after it has 

been exposed to natural or man-made hazards as well as aging and by identifying 

potential damage at the earliest possible stage. The process of implementing damage 

identification methodologies for civil, aerospace, and mechanical structures is known as 

Structural Health Monitoring (SHM) and has been the object of significant efforts in 

research and engineering practice (Balageas et al. 2006, Brownjohn 2007, Farrar and 

Worden 2012). The importance of detecting damage at an early stage has been 

emphasized by major structural collapses in recent years, such as the I-35W Mississippi 

River Bridge in Minnesota, USA, in 2007 (Figure 1.1a), the Loncomilla Bridge in Chile 

in 2004 (Figure 1.1b), and a wind turbine at the Foote Creek Rim wind energy facility 

near Arlington, in Wyoming, USA, in 2010 (Figure 1.2). The consequences of failure and 

1 
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collapse of such civil structures are associated with life safety, economic losses, and 

function disruption, e.g., the collapse of the I-35W Mississippi River bridge caused 

thirteen fatalities, many injured people (French et al. 2011), and resulted in a daily 

economic loss of US$71,000 to US$220,000 (Xie and Levinson 2011). The I-35W St. 

Anthony Falls Bridge was constructed to replace the collapsed I-35W Mississippi River 

bridge. Because of the interest in implementing SHM systems after the collapse, more 

than 500 sensors were installed in the new bridge (French et al. 2011). 

  
Figure 1.1: (a) Collapse of the I-35W Mississippi River bridge in Minnesota, USA, in 
2007, (b) Collapse of the Loncomilla bridge in Chile in 2004. 

 
Figure 1.2: Collapse of a wind turbine at the Foote Creek Rim wind energy facility near 
Arlington, in Wyoming, USA, in 2010. 
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Function disruption or collapse of civil infrastructures, such as bridges, dams, 

power generation plants, and emergency-response buildings, have devastating economic 

and life-safety effects (DHS 2014). Given that the vulnerability of civil infrastructures 

represents a significant threat to the safety, health, and economic development of a 

country, many national agencies and professional associations have made a priority to 

survey and report on the health of civil infrastructures. For example, in 2013, the 

American Society of Civil Engineers (ASCE) in the latest Report Card for America’s 

Infrastructure (ASCE 2013) graded the health of the infrastructure in the United States 

with an overall D+ (poor), requiring an estimated investment of 3.6 trillion dollars to 

upgrade it. In particular, the health of the bridges was graded with a C+ (mediocre). 

Different criteria were considered in the evaluations, such as physical condition, safety, 

resilience, and needed investments for improvement. According to the Federal Highway 

Administration of the US Department of Transportation, a large number of deficient 

bridges are associated with high safety and economic risk (FHWA 2012). For example, in 

2012, 24.9% of the bridges in the US were classified as structurally deficient or obsolete 

(Figure 1.3). 

 
Figure 1.3: Count, age, and deficiency of bridges in the US (FHWA 2012). 
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Other countries have also emphasized the risk associated to old and aged 

infrastructure. In Canada, more than 40% of the bridges currently in use were built before 

1977 and a large portion of them require urgent rehabilitation or need to be replaced 

(ISIS 2007). The cost for rehabilitating the infrastructure in Canada was estimated in 

more than US$700 billion (ISIS 2007). In Australia, a large percentage of the 50,000 

public brides are 30 to 40 years old and require strengthening. About US$170 million are 

spent each year on bridge maintenance and it is estimated that the infrastructure in 

Australia is deteriorating at a rate of US$270 million a year (Sumitomo 2009). In Japan, 

bridges were mainly built in the 1970s, and many of them have shown aging problems, 

including fracture of steel members (Fujino and Siringoringo 2008). 

Renovation and retrofit of these infrastructures require extensive time, labor, and 

financial resources. Therefore, crucial preventive and proactive actions need to be 

pursued and are required to inform and prioritize the decision-making process, including 

efficient condition-based inspection and monitoring strategies to assess the residual life, 

detecting any damage and safety threat at the earliest possible stage, and prioritizing the 

repair or replacement of the critical infrastructure. SHM has been widely accepted in the 

US and around the world as a critical tool for the management of sustainable and resilient 

critical infrastructure (Pasman and Kirillov 2007, Gopalakrishnan and Peeta 2010). 

Disastrous events such as earthquakes are known to potentially induce structural 

damage to civil infrastructures. While more significant and serious effects are expected in 

deficient and old structures, new or retrofitted structures are also vulnerable to 

performance losses during such events. Damage initiation and progression cannot always 

be detected through visual screening and thus sometimes detailed, costly, and invasive 
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post-event inspection and evaluation are required to detect various damages (e.g., 

connection failures in steel moment-frame buildings during the 1994 Northridge 

earthquake). The hidden onset of damage can propagate and result in degradation of 

structural performance and a threat to life safety, which are of particular concern 

following catastrophic events. For example, hidden damage was detected in many steel 

buildings following the Northridge 1994 (Chen and Yamaguchi 1996, Fairweather 1996, 

FEMA 2000a) and Kobe 1995 earthquakes (FEMA 2000b). 

Potential impacts of earthquakes as well as other natural and man-made hazards 

on urban societies can be reduced through accurate and timely risk mitigation decisions 

after the catastrophic event. The mitigation decisions can be supported and facilitated by 

the use of advanced SHM methods to help assess the damage in and the residual strength 

of the civil infrastructure. 

1.2.  Research objectives and scope 

Developing and implementing advanced SHM and damage identification 

methodologies for civil infrastructure requires three significant steps, key to attain a 

disaster-resilient nation (CNER 2011): (1) monitor their performance during normal 

operation and extreme loads, (2) diagnose the incidence, location, type and extent of 

damage after catastrophic events, and (3) predict their future functionality and remaining 

useful life. These steps can be realized by deploying a sensor network on the structure of 

interest, collecting continuous data from the sensing systems, extracting information from 

these data through advanced system and damage identification methods, and using the 

knowledge to support the decision-making for maintenance and inspections, emergency 
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response, and post-disaster rehabilitation (Figure 1.4). Recent advances in computing 

power and cost reductions in sensor technology (Ansari  2005, Mukhopadhyay 2011) 

offer a great opportunity to develop and implement system and damage identification 

techniques for SHM of civil structures. These techniques also need to integrate state-of-

the-art high-fidelity mechanics-based computational tools used to model and simulate the 

complex behavior of civil structures. 

 
Figure 1.4: SHM-based decision support. 

Advances in sensor technology developed within other engineering disciplines 

have also been integrated and used for SHM purposes in the civil engineering 

community. Nowadays, dense and sophisticated sensor networks have been deployed and 
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Shin 1997, Wong 2004, Koh et al. 2005a, Koh et al. 2005b, Fujino and Siringoringo 

2008, Habel 2009, Ou and Li 2010, Ni and Wong 2012, Catbas et al. 2013). However, 

current methods and practices in SHM are not achieving the goal of supporting the 

decision-making process for emergency management, condition-based maintenance and 

inspections, and structural retrofit or upgrade, which are critical and both extremely 

costly and time consuming tasks for large and complex civil structures in the real-world.  

First, there is a need to validate current state-of-the-art system and damage 

identification methods using data recorded from large and complex civil structures 

subjected to ambient, service and damage-inducing extreme loads. To date, most system 

and damage identification studies have been widely and successfully applied to 

simplified numerical structural models (i.e., numerically simulated dynamic response 

data) and small-scale physical structural models tested dynamically in laboratory 

conditions. Because of the scarcity of densely instrumented and significantly damaged 

structures, the high cost, operational requirements, and complexity of conducting tests on 

full-scale structures, availability of data recorded from real structures undergoing real 

damage and degradation processes has been extremely limited. Most of the full-scale 

tests have been conducted on in-situ bridge structures condemned for demolition, in 

which artificial damage was induced during the demolition process. For building 

structures, studies on full-scale structures subjected to damage are even more limited. 

In this dissertation, comprehensive system identification (SID) and dynamic 

characterization of a full-scale five-story reinforced concrete (RC) building tested on the 

Large High-Performance Outdoor Shake Table (NEES@UCSD) are conducted. Vibration 

data generated from different sources of excitation (ambient vibration as well as free and 
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forced vibration tests) are employed to investigate the evolution of the modal properties 

during the construction of the structure and to study the effects of nonstructural 

components, seismic-induced damage, and environmental conditions on the identified 

dynamic characteristics of the building, for both fixed-base and base-isolated 

configurations of the test specimen. 

Secondly, there is a disconnect between the advances made in the subfields of 

SHM and computational mechanics-based modeling and simulation of structures. In 

particular, all system and damage identification studies on nonlinear structures have been 

conducted using simple nonlinear structural models (e.g., single degree-of-freedom, 

chain-like multi-degree-of-freedom systems, and shear building models) or small scale 

physical specimens tested in laboratories. In this dissertation, a new framework for 

system and damage identification of nonlinear structural systems is developed and 

validated. The proposed framework integrates high-fidelity mechanics-based nonlinear 

finite element (FE) structural modeling and analysis with Bayesian inference techniques. 

The methodology can be employed for rapid damage identification. Civil structures 

subjected to earthquake excitation are the focus in this dissertation. 

1.3.  Outline of the dissertation  

Chapter 2 presents a review of the fundamental aspects of system and damage 

identification in SHM reported in the literature, and summarizes some of the most 

relevant experimental studies and real-world application examples in these research 

areas. 
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The first part of the dissertation, Chapters 3 through 6, focuses on the system 

identification and dynamic characterization of a full-scale five-story reinforced concrete 

building (BNCS building) tested on the NEES@UCSD shake table. The second part of 

the dissertation, Chapters 7 through 10, presents a novel framework for system and 

damage identification of civil structures which integrates high-fidelity mechanics-based 

nonlinear FE structural modeling and analysis with nonlinear Bayesian inference 

methods. 

Chapter 3 investigates the influence of the construction process and effects of 

nonstructural components and systems (NCSs) on the modal properties of the BNCS 

building. Ambient vibration (AV) data were recorded daily and shock (free vibration) and 

forced vibration tests (low-amplitude white noise base excitations) were conducted on the 

building at different stages of construction. Different state-of-the-art system identification 

methods, including three output-only and two input-output, are used to estimate the 

modal properties of the building. The obtained results are used to investigate the effects 

of the construction process and NCSs on the dynamic properties of this building system 

and to compare the modal properties obtained from different methods, as well as the 

performance of these methods. 

Chapter 4 describes the effects of amplitude of excitation and structural as well as 

nonstructural damage in the modal properties of the BNCS building in its fixed-base 

configuration. While fixed to the shake table platen, the building was subjected to a suite 

of six earthquake motions designed and applied to progressively damage the structure and 

NCSs. Between seismic tests, ambient vibration response was recorded, and, in addition, 

low-amplitude white noise (WN) base excitation tests were conducted at key stages 
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during the test protocol. Using the vibration data recorded, different system identification 

methods are used to estimate the modal properties of an equivalent viscously-damped 

linear elastic time-invariant model of the building at different levels of damage and their 

results are compared. Furthermore, the correlation between actual damage (from visual 

inspections performed between the seismic tests) and the identified modal parameters is 

analyzed. The identified natural frequencies are used to determine the progressive loss of 

apparent global stiffness of the building, and the state-space models identified using WN 

base excitation test data are employed to investigate the relative modal contributions to 

the measured building response at different damage states. This research provides a 

unique opportunity to investigate the performance of different SID methods when applied 

to vibration data recorded from a real building subjected to progressive damage, which 

was induced by a realistic source of earthquake excitation. 

In Chapter 5, the BNCS building with seismic isolation at its base is investigated. 

In this configuration, the building was subjected to a sequence of seven seismic tests, 

which progressively increased the seismic demand on the structure and NCSs. Using WN 

and seismic test data, the effects of the isolation system in elongating the predominant 

period of the building, concentrating the deformation in the isolation layer, and 

augmenting the energy dissipation capacity of the building system are explored. The 

effectiveness of the isolation in reducing the floor acceleration and interstory drift 

demands is demonstrated. Before and after each seismic test, low-amplitude WN base 

excitation tests were conducted and AV data were recorded continuously for 

approximately sixteen days. Using these data, the modal parameters of an equivalent 

viscously-damped linear elastic time invariant model are estimated. 
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Chapter 6 presents a comprehensive statistical analysis of the identified modal 

properties of the BNCS building in its fixed-base configuration using AV data recorded 

continuously for about fifteen days and including different damage states. Two state-of-

the-art methods of operational modal analysis are used to automatically identify the 

modal properties of the fixed-base building at different damage states using the recorded 

AV data. A statistical analysis of the identified modal parameters is performed to 

investigate the statistical variability and accuracy of the system identification results. The 

variability of the identified modal parameters due to environmental conditions is also 

investigated. 

Chapter 7 introduces a novel framework that combines high-fidelity mechanics-

based nonlinear (hysteretic) FE models and nonlinear stochastic filtering methods to 

estimate unknown material parameters in frame-type structures. The proposed framework 

updates nonlinear FE models using spatially limited noisy measurement data, and it can 

be directly used for damage identification purposes. Numerically simulated data of a 

cantilever steel column, representing a bridge pier, and a two-dimensional steel frame 

subjected to earthquake ground motions of varying intensities are used to validate the 

effectiveness, robustness, and accuracy of the framework. 

Chapter 8 extends the framework presented in Chapter 7 and analyzes the 

performance and robustness of the methodology using numerically simulated data from a 

three-dimensional 5-story 2-by-1 bay RC frame building subjected to bi-directional 

earthquake excitations. The case of acceleration response data measured at a limited 

number of locations is studied and the benefits of using heterogeneous sensor arrays on 

the identifiability of the modeling parameters and updating of the nonlinear FE model are 
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also investigated. Damping parameters, in addition to parameters characterizing the 

nonlinear material constitutive laws, are also considered in the estimation process. Three 

non-sequential updating approaches are presented and analyzed to alleviate the 

computational burden. An adaptive filtering approach is proposed to estimate the 

measurement noise covariance matrix in addition to the time-invariant modeling 

parameters. Effects of the input measurement noise on the estimation results are also 

analyzed. 

In Chapter 9, the performance of three different Kalman−based filters, namely the 

Unscented Kalman filter (UKF), Extended Kalman filter (EKF) and Iterated-EKF 

(IEFK), for nonlinear structural finite element model updating is investigated. 

Comparison of the performance of these different filters in terms of convergence, 

accuracy, robustness, and computational requirements is conducted. Numerically 

simulated data from a three-dimensional 5-story 2-by-1 bay RC frame building subjected 

to bi-directional earthquake excitation is used as an application example. 

Chapter 10 presents a methodology to update mechanics-based nonlinear 

structural FE models subjected to unknown input excitation(s). The approach can 

estimate unknown time-invariant parameters of a nonlinear FE model of the structure and 

the unknown time-histories of the input excitations, using spatially-sparse output 

response measurements recorded during a damage-inducing event. Using the estimated 

model parameters and input excitations, the updated nonlinear FE model can be 

interrogated to detect, localize, classify, and assess the damage in the structure. The 

effects of using heterogeneous sensor arrays and high intensity levels of output 

measurement noise are investigated. Numerically simulated response data of a three-
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dimensional 4-story 2-by-1 bay steel frame building with six unknown modeling 

parameters, subjected to unknown bi-directional seismic excitation; and a three-

dimensional 5-story 2-by-1 bay RC frame building with nine unknown modeling 

parameters and subjected to unknown bi-directional seismic excitation are used to 

validate the proposed methodologies. 

Chapter 11 presents the summary and conclusions of this dissertation as well as 

recommendations for future related research. 
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CHAPTER 2 

STRUCTURAL HEALTH MONITORING: A LITERATURE 

REVIEW 

2.1. Introduction 

 The need and importance of implementing accurate and robust system 

identification (SID) and damage identification (DID) strategies for civil structures has 

attracted significant attention to structural health monitoring (SHM) within the structural 

engineering community over the last forty years. Structural monitoring can be useful and 

necessary in different cases and applications, such as: modifications/retrofit of existing 

structures, monitoring during demolition, structures subjected to aggressive environments 

or degradation of materials, fatigue damage assessment, in-situ characterization of loads, 

to assist structural maintenance, to support emergency response, quality control of 

construction, post-event damage assessment, etc. In particular, for Damage Identification 

(DID), the research community has developed and adopted a hierarchical organizational 

scheme to assess the condition of a structure. This scheme includes five different levels 

of damage identification (Rytter 1993, Worden and Dulieu-Barton 2004), namely, Level 
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1: Detection (existence of damage), Level 2: Localization (location of damage), Level 3: 

Classification (type of damage), Level 4: Assessment (extent of damage), and Level 5: 

Prediction/Prognosis (estimation of remaining useful life). 

System and damage identification methodologies can be classified based on 

different criteria, such as: 

 Model-based versus signal processing (model-free) based methods, 

 Methods assuming linear versus nonlinear response of the system, 

 Domain of the method (time, frequency, modal, or time-frequency domain 

methods), 

 Input-output (single input-single output or SISO, single input-multiple output 

or SIMO, multiple input-single output or MISO, multiple input-multiple 

output or MIMO) versus output-only methods, 

 Type of applications used to validate and verify the methods (numerically 

simulated data from simplified models, numerically simulated data from 

realistic models of large and complex structures, data collected from small 

scale physical laboratory experiments, data collected from large/full-scale 

experiments, data recorded from structures in the field). 

The remainder of this chapter focuses on a literature review based on the 

assumption of linear or nonlinear response of the structural system. In addition, special 

emphasis is given to the type of applications used to verify the different methodologies. 
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2.2.  Linear system and damage identification 

 Estimation of the linear dynamic characteristics of structures has been a subject of 

great importance for many decades. The design and analysis of civil structures subjected 

to dynamic loads, such as winds or earthquakes, requires the knowledge of the dynamic 

properties of the structure of interest. From the 1930’s, many field tests have been 

conducted to propose simplified expressions to relate the number of stories or height of 

buildings to their natural periods of vibration, which are required to estimate the dynamic 

loads imposed on the structure, and also to verify the results of analytical models. One of 

the first and most extensive studies focused on the identification of the dynamic 

properties of building structures was conducted following the 1933 Long Beach 

earthquake; Carder (1936) reported the fundamental period of 212 buildings and 37 tank 

towers located in California, the former estimated from ambient vibrations and the latter 

using free vibrations. In 1934, Jacobsen and Blume built a mechanical shaker at Stanford 

University, and used it to conduct forced vibration tests in order to estimate the dynamic 

properties of buildings, dams, bridges, and soils. Some of these resu1ts are summarized 

in Blume (1936), giving special emphasis to the estimation of the natural periods of 

vibration. Later on, significant efforts were made to investigate the response of civil 

structures subjected to different types of dynamic excitation, such as mechanical shakers, 

free-vibration tests, induced ground motions (e.g., nuclear blast), seismic events, and 

ambient vibrations (e.g., Kanai and Yoshigawa 1951, Alford and Housner 1952, Hudson 

1960, Hudson 1964, Cherry and Brady 1965, Clough et al. 1965, Nielsen 1966, Kuroiwa 

1967, Rea et al. 1971, Jennings et al. 1971, Trifunac 1972, Blume 1972, Hart and Ibanez 
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1973, Hart et al. 1973, Shah and Kircher 1973, Udwadia and Trifunac 1973, Foutch 

1976). 

 The use of the identified dynamic properties of structures and quantities derived 

therefrom (e.g., modal curvatures) has been later extended to other applications, one 

being damage identification,  a research areas that has attracted significant attention from 

the structural engineering community. Methods based on linear SID, with modal 

parameter identification being the most popular in this group, have been proposed for 

DID purposes for many years. DID based on changes in the identified modal properties 

of an equivalent linear-elastic viscously-damped model of the structure has been 

undoubtedly one of the most popular approaches. This approach assumes that low-

amplitude dynamic input-output or output-only data are available before and after the 

structure has suffered damage. Its premise is that by analyzing the changes in the 

identified modal properties or quantities derived therefrom, which depend on the physical 

characteristics of the structure (i.e., mass, stiffness, and energy dissipation mechanisms), 

damage in the structure can be identified (Doebling et al. 1996, Housner et al. 1997, 

Carden and Fanning 2004, Fan and Qiao 2011). Important research efforts within modal 

identification-based methods for DID are: 

 Methods based on changes in identified natural frequencies (Loland  and 

Dodds 1976, Idichandy and Ganapathy 1990, Salawu 1997, Bicanic and Chen 

1997, Chassiakos et al. 2007), used mostly for damage detection. 

 Methods based on changes in mode shapes (Mayes 1992, Zhou et al. 2005, 

Siddique et al. 2006). 

 Methods based on mode shape curvatures (Pandey et al. 1991, Maeck and De 
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Roeck 1999, Abel Wahab and De Roeck 1999). 

 Methods based on changes in flexibility (Raghavendrachar and Aktan 1992, 

Pandey and Biswas 1994, Pandey and Biswas 1995, Catbas and Aktan 2000, 

Bernal 2002, Bernal and Gunes 2004). 

 Methods based on changes in stiffness matrix (Salawu and Williams 1993, 

Maeck et al. 2000, Maeck el al. 2001, Lus et al. 2004). 

 Methods based on changes in frequency response function (Lew 1995, 

Sampaio et al. 1999). 

 Methods based on modal strain energy (Stubbs et al. 1995, Stubbs and Kim 

1996, Shi et al. 1998, Shi et al. 2000). 

 Methods based on residual forces (Ricles and Kosmatka 1992, Kosmatka and 

Ricles 1999, Zimmerman et al. 2001). 

 DID based on changes in identified modal parameters has been widely and 

successfully applied to simplified numerical structural models (i.e., numerically 

simulated dynamic response data) and small-scale physical structural models tested 

dynamically in laboratory condition (Brownjohn 2007). However, because of the scarcity 

of densely instrumented and significantly damaged structures, along with the high cost, 

operational requirements, and complexity of conducting tests on full-scale structures, 

availability of data recorded from real structures undergoing real damage and degradation 

processes has been extremely limited. Most of full-scale tests have been conducted on in-

situ bridge structures condemned for demolition (Farrar et al. 2000, Peeters and De 

Roeck 2001, Huth et al. 2005, Lauzon and DeWolf 2006, Dilena et al. 2011, Siringoringo 

et al. 2013), in which artificial damage was induced during the demolition process (e.g., 
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partial saw cuts in steel I beams, partial cuts of post-tensioning tendons). However, this 

kind of artificial damage is not representative of real damage caused by natural loads or 

aging. For building structures, shake table tests have provided unique data to assess the 

modal parameters of buildings at different states of damage (Moaveni et al. 2010, Ji et al. 

2011, Hien and Mita 2011, Moaveni et al. 2011, Moaveni et al. 2013, Astroza et al. 2013, 

Belleri et al. 2014). Other structures such as dams (Darbre and Proulx 2002), wind 

turbines (Prowell et al. 2011, Adams et al. 2011), and offshore platforms (Vandiver 1975, 

Campbell and Vandiver 1980, Shahrivar and Bouwkamp 1986, Brincker et al. 1995) have 

also been studied using this approach. 

 To make use of more realistic structural models in SHM, finite element (FE) 

model updating, a model-based method introduced in the 1970s for linear structures 

(Berman and Flannelly 1971), has emerged as a powerful methodology (Housner  et al. 

1997, Friswell and Mottershead 1995, Marwala 2010). FE model updating can be defined 

as the process of calibrating or tuning a FE model to minimize the discrepancies between 

the FE predicted and measured responses of the real structure of interest. This process 

can be conducted in the frequency, time, time-frequency, or modal domains and can be 

formulated for deterministic or stochastic structural models. A probabilistic formulation 

is desirable, since it incorporates uncertainties in the measurements and model 

predictions, which in turn allow the assessment of the uncertainty in the estimated 

parameters as part of the FE model updating procedure (Beck and Katafygiotis 1998). 

Several methods for FE model updating have been proposed in the literature and most of 

them have been used in conjunction with linear FE structural models (Mottershead and 

Friswell 1993, Friswell and Mottershead 1995, Marwala 2010), including applications to 
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full-scale structural specimens (Alvin 1997, Fritzen et al. 1998, Cobb and Liebst 1997, 

Brownjohn et al. 2001, Teughels and De Roeck 2004, Teughels and De Roeck 2005, Lam 

et al. 2004, Jaishi and Ren 2005, Jaishi and Ren 2006, Moaveni et al. 2010, Mottershead 

et al. 2011, Simoen et al. 2013, Sipple and Sanayei 2014). However, when using linear 

FE models updated based on input-output or output-only data obtained from low-

amplitude excitation, the damage is estimated as a loss of effective stiffness, which 

makes it difficult or impossible to accomplish Levels 3 (classification) and 4 (assessment) 

and disallow Level 5 (prognosis) of DID. 

 Other approaches have also been used for DID assuming linear elastic structural 

response. Methods based on neural networks and genetic algorithms (Hao and Xia 2002, 

Adeli and Jiang 2006, Marano et al. 2010, Meruane and Heylen 2011, Chen and 

Nagarajaiah 2011), principal component analysis and blind source separation (Poncelet et 

al. 2007, Li et al. 2012, Yang and Nagarajaiah 2013a, Abazarsa et al. 2013, Antoni and 

Chuahan 2013, Yang and Nagarajaiah 2013b), Bayesian inference (Sohn and Law 1997, 

Sohn and Law 2000, Ching and Beck 2004, Yuen et al. 2006, Yuen and Kuok 2011) have 

been investigated. 

 DID based on linear elastic response of structures and, in particular, methods 

based on changes in modal properties have been objected primarily because (i) linearity 

is an idealization of the response behavior of real structures which are intrinsically 

nonlinear from the onset of loading (Kerschen et al. 2006), i.e., even when subjected to 

low amplitude excitations (Moaveni et al. 2011, Astroza et al. 2013), (ii) modal 

parameters and derived quantities (e.g., curvature mode shapes, modal strain energy) are 

global properties of the structure and often are not sensitive enough to local damage at 
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the component or sub-component level (Zheng and Mita 2008, Gopalakrishnan et al. 

2011),  and (iii) low-amplitude (e.g., ambient) vibrations used for modal identification 

provide information about loss of effective stiffness, but do not contain information about 

loss of strength, the most important form of structural damage, and the history of inelastic 

deformations and related damage experienced by the structure. 

2.3.  Nonlinear system and damage identification 

 To overcome the limitations of linear (e.g., modal-based) damage identification 

methods, several model-free or signal processing based methods have been proposed and 

investigated for nonlinear structural systems. Their application has been limited to 

simulated data from simple nonlinear structural models and to small scale physical 

specimens and the results have shown limited success, because these methods cannot 

accurately classify and assess the damage. Moreover, they have not been successfully 

applied to real structures. Among these methods, we can mention the restoring force 

surface method (Masri and Caughey 1979, Masri et al. 1982), wavelet decompositions 

(Staszewski 1998, Kijewski and Kareem 2003, Yan et al. 2006, Aguirre et al. 2013, Guo 

and Kareem 2015), Empirical Mode Decomposition combined with the Hilbert-Huang 

Transform (Huang et al. 1998, Yang and Lin 2004a, Feldman 2011), Volterra and Wiener 

series (Worden and Tomlinson 2001), modal analysis for nonlinear systems (Rosenberg 

1962, Vakakis et al. 1996, Vakakis 1997), and the Wigner-Ville distribution (Feldman 

and Braun 1995, Bradford et al. 2006).  

More recently, batch and sequential estimation techniques, such as the minimum 

mean-square error (MMSE) estimation and adaptive least squares (ALS) estimation, as 
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well as Bayesian methods such as maximum a posteriori (MAP) estimation, the extended 

Kalman filter (EKF), the unscented Kalman filter (UKF), and particle filters (PF), have 

been used in model-based methods for parametric identification of nonlinear structural 

models (Hoshiya and Saito 1984, Chassiakos et al. 1998, Smyth et al. 1999, Yang and 

Lin 2004b, Corigliano and Mariani 2004, Ghanem and Ferro 2006, Wu and Smyth 2007, 

Chatzi and Smyth 2009, Ching et al. 2006a, Ching et al. 2006b, Muto and Beck 2008, 

Huang et al. 2010).  

A special mention must be given to the pioneering work of Distefano and co-

workers in the 1970's (Distefano and Rath 1975a, Distefano and Rath 1975, Distefano 

and Pena-Pardo 1976). They proposed batch (optimization-based) and filtering 

approaches to estimate states and parameters of nonlinear hysteretic structural systems, 

including SDOF and shear-type building structures.  

Applications of the abovementioned estimation methods have been limited to 

simulated data from highly idealized nonlinear structural models, such as single degree-

of-freedom (DOF), chain-like multi-DOF systems and shear building models, which are 

not suitable for accurate and reliable nonlinear response prediction of actual civil 

structures with real-world complexities. 

 In recent years, a limited number of studies have focused on deterministic and 

probabilistic (Bayesian) methods for nonlinear FE model updating of civil structures 

subjected to static and dynamic loadings (Nasrellah and Manohar 2011, Song and Dyke 

2013, Song et al. 2013, Liu and Au 2013, Omrani et al. 2013, Yang et al. 2014). 

However, in the case of nonlinear hysteretic FE model updating of structures subjected to 

dynamic excitation, previous studies used simplified structural models with lumped 
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nonlinearities (e.g., plastic hinges) described using empirical nonlinear models, such as 

the Bouc-Wen model (Ismail et al. 2009). These simplified and empirical models are not 

capable to properly represent the actual nonlinear behavior of structures and, 

consequently, are not typically employed in state-of-the-art mechanics-based structural 

FE models in analysis and design of nonlinear structures (Filippou and Fenves 2004). 

 The FE method, originally introduced in the 1950's (Argyris 1954, Turner et al. 

1956) remains an active area of research aiming at high-fidelity nonlinear response 

simulation of structures up to incipient collapse and beyond. Different types of FEs (e.g., 

1D beam-column elements, 2D plate/shell elements, 3D continuum/brick elements) with 

different formulations (e.g., displacement-based, force/stress-based, mixed/hybrid) and 

various kinds of nonlinear material constitutive models (e.g., pseudo-elasticity, plasticity, 

coupled damage-plasticity, smeared crack) were and are still being developed for this 

purpose. Also, the increase in computational power permits the use of nonlinear structural 

models of increasing complexity and fidelity. 

 Recently, methodologies for model updating of state-of-the-art nonlinear FE 

models using input-output data recorded during damage-inducing events, i.e., loading 

events strong enough to force the structure into its nonlinear range of behavior, have been 

proposed in the literature. This approach represents an important progress in the field of 

SHM of civil structures, as it will potentially provide a methodology for rapid post-

earthquake performance assessment of structural safety from the updated nonlinear 

mechanics-based FE structural model. In addition, damage prognosis can also be 

conducted using the updated FE model and possible future loading scenarios. Using 

numerically simulated response data from a two-dimensional 1-story 1-bay steel frame 
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with distributed-plasticity subjected to a harmonic lateral force excitation, Shahidi and 

Pakzad (2014) used the response surface method to update two parameters of a bilinear 

material constitutive law (modulus of elasticity and post yielding stiffness ratio), which 

was utilized to model the fibers of the frame structural members. Astroza et al. (2015) 

and Ebrahimian et al. (2015) used the UKF and EKF, respectively, to estimate time-

invariant parameters describing the nonlinear material constitutive models of simple but 

realistic steel structures. Their application examples used numerically simulated response 

data of a cantilever steel pier and a two- dimensional 3-story 3-bay steel frame and 

involved the estimation of three to eight parameters. The methodologies proposed by 

Astroza et al. (2015) and Ebrahimian et al. (2015) represent the first comprehensive effort 

to integrate high-fidelity mechanics-based nonlinear FE modeling and response 

simulation of civil structures with advanced Bayesian inference methods for SHM. They 

are paving the way to real-world applications and will result in significant progress in the 

areas of SHM, disaster management, risk mitigation, and public safety. 
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CHAPTER 3 

INFLUENCE OF THE CONSTRUCTION PROCESS AND 

NONSTRUCTURAL COMPONENTS ON THE MODAL 

PROPERTIES OF A FIVE-STORY BUILDING 

3.1.  Introduction 

Development of finite element (FE) modeling and analysis tools and the advent of 

powerful and affordable computers have had a significant impact in the fields of 

structural and earthquake engineering. Nowadays, it is common and almost required in 

practice to analyze civil structures under different load cases using refined, albeit linear, 

three-dimensional FE models. However, professional judgment and experience of the 

engineers are not sufficient to ensure that the FE structural models developed are able to 

capture the actual behavior of the structure of interest when subjected to different types of 

loading, particularly earthquakes. Parameter and modeling uncertainties (e.g., material 

and geometric parameters, energy dissipation mechanisms) exist and affect the accuracy 

of the FE models developed to analyze structures subjected to dynamic loads. 
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Health monitoring and particularly system identification of civil structures has 

become an important field filling the gap between numerical models and actual behavior 

of structures. Estimation of the dynamic properties of structures using vibration data 

recorded in the field or from large-scale structural specimens in the laboratory under 

realistic conditions allows to calibrate numerical models of these structures (e.g., 

Brownjohn 2003, Ogiyama and Sato 2004, Jaishi and Ren 2005, Skolnik et al. 2006, 

Nayeri et al. 2008, Kanazawa et al. 2008, Moaveni et al. 2011). Moreover, results of 

structural identification can be used to (i) detect, locate, and quantify structural damage 

induced by extreme events (e.g., Farrar et al. 2001, Ramos et al. 2010, Moaveni et al. 

2010,2011), (ii) design or analyze retrofit strategies (e.g., Mendoza et al. 1991, Kanazawa 

2005, Lorenz 2006, Niousha and Motosaka 2007, Soyoz et al 2013,, and (iii) study the 

effects of environmental conditions on the dynamic properties of structures (e.g., 

Cornwell et al. 1999, Peeters and De Roeck 2001a, Sohn 2003, He at al. 2007). 

Experimental modal analysis and operational modal analysis are the main 

procedures to identify the modal parameters (natural frequencies, equivalent damping 

ratios, and mode shapes) from recorded structural vibration data, information that can be 

used to improve and update numerical models of the structure of interest. Most of the 

studies conducted in this area were based on data collected from completed structures 

(e.g., Brownjohn 2003, Skolnik et al. 2006, Hong et al. 2009), while only a few have 

analyzed the variation of the dynamic properties of buildings during construction (e.g., 

Ventura and Schuster 1996, Memari et al. 1999, Ni et al. 2011, Nunez et al. 2013) and the 

effects of nonstructural components and systems (NCSs) on the dynamic properties (e.g., 

Kanazawa et al. 2008, Su et al. 2005, But and Omenzetter 2014, Devin and Fanning 
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2012). Based on previous studies, by following the construction process of a building, it 

is possible to validate numerical structural models used for design purposes and to 

control the quality of the construction. Furthermore, it has been shown that the effects of 

the NCSs should not be neglected because their dynamic interaction with the structure 

can influence significantly the dynamic properties of the complete (coupled structural and 

nonstructural) building system. 

Most of the studies investigating the effect of the construction process and NCSs 

on the modal properties of structures have been conducted on real buildings; 

consequently, it was not possible to closely follow the construction process in order to 

disaggregate the effects of the construction process and NCSs on the “final” dynamic 

characteristics of the buildings. Also, these studies only considered output-only methods 

to estimate the modal properties, because it is difficult and expensive to perform forced 

vibration tests on real structures. As a result, previous studies have not been able to 

analyze in detail the effect of the amplitude of the excitation (or structural response) on 

the identified modal parameters. This is an important factor influencing the dynamic 

interaction between the structure and the NCSs. This interaction depends significantly on 

the level of kinematic and inertia interaction between the structure and the NCSs, which 

is directly related to the amplitude of the input excitation. 

A shake table test program on a fully furnished full-scale building offers the 

unique opportunity to follow the construction process in detail and also to consider 

different sources and amplitudes of input excitations in the test protocol. This chapter 

focuses on a full-scale five-story reinforced concrete (RC) building specimen equipped 

with a wide range of NCSs and tested on the NEES-UCSD shake table in the period 
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August 2011 - May 2012. Structural responses from (i) daily ambient vibrations, (ii) free 

vibrations induced by impacts on the structure, and (iii) white noise base excitation tests 

performed at different amplitudes were recorded at different stages of construction and 

installation of the NCSs. The recorded output-only and input-output data were used to 

identify the dynamic characteristics (i.e., natural frequencies, equivalent damping ratios, 

and mode shapes) of the test specimen. A detailed supervision of the construction process 

and installation of the NCSs together with a comprehensive set of experimental data 

allows to study the evolution of the modal properties of the building specimen during 

construction and analyze the effect of NCSs on the modal properties of the system. The 

study presented in this chapter investigates the disaggregated effects of different 

construction activities and several NCSs on the natural frequencies, damping ratios, and 

mode shapes of the building specimen obtained from low-intensity excitation. 

3.2.  Description of specimen and construction process 

3.2.1. Specimen 

The test structure was a full-scale five-story cast-in-place RC building. The 

building had two bays in the longitudinal direction (direction of shaking) and one bay in 

the transverse direction, with plan dimensions of 6.60×11.00 m, respectively. The 

building had a floor-to-floor height of 4.27 m, a total height (measured from the top of 

the foundation to the top of the roof slab) of 21.34 m, and an estimated total weight of 

3010 kN for the bare building structure and 4420 kN for the structure with all the NCSs, 

with both weights excluding the foundation which weighed 1870 kN. The lateral load 
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resisting system was provided by two identical one-bay special RC moment resisting 

frames. These frames were oriented east-west (direction of shaking) with one on the north 

face of the building and the other on the south face. The beams had a 0.30×0.71 m cross-

section and their reinforcement, especially at the beam-column connection, varied in 

details from floor to floor for performance comparison purposes. All 0.66×0.46 m 

columns were reinforced with 6 #6 and 4 #9 longitudinal bars and a prefabricated 

transverse reinforcement grid. The floor system consisted of a 0.2 m thick concrete slab 

at all levels. There were two main openings on each floor slab to accommodate a steel 

stair assembly and a functioning elevator, each of which ran the full height of the 

building. Two 0.15 m thick transverse RC shear walls provided the support for the 

elevator guiderails. Detailed information about the structural system, nonstructural 

components and their design considerations can be found in Chen et al. (2013). Figure 

3.1 shows schematic elevation and plan views of the test building. 

 
Figure 3.1: Test specimen: (a) South elevation, (b) Plan view of level 3 with temporary 
(black arrows) and final (red circles) accelerometer arrays ( dimensions in m) 
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3.2.2. Construction process 

The construction of the building began in May 2011 with the foundation. The 

foundation consisted of two 1.5 m thick post-tensioned beams running east-west 

connected with transverse beams and an interior slab. The foundation was completed in 

June 2011. Constructions proceed with the superstructure, which was built at a rate of one 

level every two to three weeks. The shoring system involved three adjacent floors, the 

main shoring was installed at the floor under construction, while reshores were placed at 

the two floors below and then removed five days after concrete was cast to allow 

sufficient strength gain. The bare building structure was completed on September 23, 

2011. In parallel with the construction of the building, the installation of the stairs began 

on August 13 and was completed on October 11, 2011. 

After completion of the bare building structure, installation of the NCSs started on 

October 13, 2011. Each level was equipped with special-purpose NCSs to support various 

types of occupancy. The first floor was designated as a utility floor, while the second 

floor was configured as a home office and a laboratory environment area, including 

anchored and unanchored equipments for seismic performance comparison purposes. The 

third floor housed two computer servers representing important electronic equipment 

commonly damaged during earthquakes. Levels four and five were designated as hospital 

floors, the fourth floor was configured as an intensive care unit (ICU) while the fifth floor 

represented a surgery suite. Also, partial mechanical, electrical, and plumbing subsystems 

were installed in the building. An electrical distribution system was required to support 

operation of the medical equipment, elevator, and lighting, while the plumbing system 
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supported the storm drain service, fire sprinklers, and HVAC (heating, ventilation, and 

air conditioning) unit. A fully-operational passenger elevator, a prefabricated steel stairs, 

a ceiling subsystem, and gypsum board partition walls were also installed in the building. 

The facade consisted of a light gauge metal stud balloon framing overlaid with synthetic 

stucco over the bottom three stories and precast concrete panels over the top two stories. 

Anchored to the roof were a penthouse, an air handling unit (AHU), and a water-filled 

cooling tower with a volume of approximately 1.25 m3. The installation of all NCSs was 

completed on February 22, 2012. On March 2, 2012, four high-damping rubber isolators 

were installed below the four corners of the building, condition which remained until the 

end of the first phase of the seismic tests (May 1, 2012). Figure 3.2 shows the building 

specimen at different stages of construction. 

 
Figure 3.2: Test building at different stages during construction: (a) August 18, 2011 
(SW corner), (b) October 12, 2011 (bare structure, NW corner), (c) February 23, 2012 
(complete building, SE corner). 

The installation of the exterior balloon framing (from Level 1 to Level 4, see 

Figure 3.1b) was performed between November 1 and December 7, 2011. This 

installation involved three phases: installation of vertical steel studs (November 1 to 

November 17, 2011), installation of angle clips (November 28 to November 30, 2011), 
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and installation of exterior wallboard (November 29 to December 7, 2011). The weight of 

the balloon framing was approximately 55 kN per story and the system consisted of 

continuous light gauge metal studs each connected with a clip, for lateral and vertical 

support, to each floor slab or beam over the bottom three stories. The exterior precast 

cladding covering the fourth and fifth stories was installed on December 19 and 20, 2011. 

The weight of each panel varied between 35 and 53 kN for a total weight of 

approximately 340 kN per story. The panels were connected to the building structure 

through a bearing plate at the bottom (for vertical support) and pin-connected to the slab 

or beam at the top by means of steel plates and horizontal steel rods (push-pull 

connections). Therefore, the precast cladding system was designed to have minimum 

contribution in the lateral stiffness of the building. 

The main components of the elevator system contributing to the mass of the 

building were the counterweight and the cabin. The counterweight, which consisted of 

steel block weights, was gradually installed between January 17 and February 22, 2012, 

reaching a total weight of 16.2 kN. The cabin was installed on February 6 and 7, 2012, 

and it had a weight of 9.9 kN. The main roof-top mounted equipments, consisting of a 

cooling tower and an AHU, were installed on December 9 and December 13, 2011, 

respectively. The weight of the cooling tower, including its supporting system, was 18.1 

kN (under empty condition) while the weight of the AHU was 6.7 kN. Also, a penthouse 

with a total weight of 25.5 kN (surrounding the roof slab stairs opening) was installed on 

the roof between November 18 and December 2, 2011. 

The interior partition walls (PWs) were installed between December 5 and 

December 23, 2011, in the first three stories, and between January 9 and February 7, 
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2012, in the fourth and fifth stories. Vertical studs at top and bottom tracks were attached 

to the concrete with fasteners spaced at 0.61 m and the gypsum panels were attached to 

them using drilling screws also spaced at 0.61 m. The weight of the PW systems varied 

between 26 and 43 kN per floor. Figure 3.1b shows a plan view of Level 3 of the 

building. More information about the interior PWs is available in Wang et al. (2015). 

3.3. Instrumentation array and dynamic tests 

3.3.1. Instrumentation array 

Before placing the concrete slab at the third level, a temporary accelerometer 

array was deployed in the structure on August 18, 2011, consisting of four translational 

sensors per floor (2 in the longitudinal and 2 in the transverse direction, see Figure 3.1b). 

The accelerometers were ±10 g MEMS Measurement Specialties model 4000A, with a 

frequency range DC–350 Hz and dynamic range of 76 dB. The data acquisition system 

consisted of 16-bit National Instruments PXI chassis (model SCXI 1520). Later, on April 

9, 2012, a denser accelerometer array consisting of four triaxial accelerometers per floor 

(one at each corner) was deployed in the building. In addition, two triaxial accelerometers 

were installed on the platen of the shake table and one at the interior bottom of the 

foundation block (reaction mass) of the shake table. These accelerometers were force-

balance Episensor, with amplitude range of ±4 g, frequency range DC–200 Hz and wide 

dynamic range of 155 dB. The data acquisition system consisted of Quanterra Q330 data 

loggers from Kinemetrics, Inc. Figure 3.1b shows the typical floor instrumentation for 

both accelerometer arrays. Also, linear potentiometers (~120), string potentiometers (~ 
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50), strain gages (~50), load cells (~70), GPS antennas (5) and digital cameras (~87) were 

deployed in the test structure to record data during the seismic tests (Hutchinson et al. 

2014). 

In this study, to study the effects of the main construction activities and individual 

NCSs installed in the test specimen, the acceleration response of the building measured 

by the temporary accelerometer array was used to identify the modal dynamic properties 

of the test specimen at several stages of construction. The data were sampled at 240 Hz 

and the acceleration time series were detrended and filtered using a band-pass order 4 IIR 

Butterworth filter with cut-off frequencies at 0.25 and 25 Hz, frequency range containing 

all the vibration modes contributing noticeably to the dynamic response of the building. 

3.3.2. Dynamic tests 

Vibration data from more than 400 dynamic tests were recorded on the building 

during the period from August 2011 to May 2012. The dynamic tests consisted of 

ambient vibration, free vibration (shock-induced), and forced vibration tests (low-

amplitude white noise, pulse-type, and seismic base excitations) using the NEES-UCSD 

shake table. During the construction of the specimen, 10 minutes of ambient vibration 

data were recorded daily and shock tests (using a truck tire)  were performed on average 

once a week between August 18 and December 22, 2011. It is noted that the construction 

of the first two stories of the structure were completed prior to August 18, 2011, and no 

tests were performed during that period. Low-amplitude white noise base excitation tests 

were conducted at key stages of the construction process, i.e., on October 12, 2011 when 

the construction of the structural skeleton was finished (bare building structure), on 
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February 23, 2012 when the installation of all NCSs was completed (complete building), 

and on March 09, 2012 when the building was supported by seismic isolators. Also, 

before and after each seismic test, ambient vibration data were collected and white noise 

tests were conducted to investigate the effects of damage on the modal dynamic 

characteristics of the building system, which is the subject of another study (Astroza et al. 

2015). Table 3.1 summarizes the recorded vibration data used in this study. 

Table 3.1: Recorded vibration data used in this study. 

Date Description of the test State of the 
system 

Aug. 18 - Oct. 12, 2011 Daily 10min ambient vibrations Under construction 

Aug. 22 - Oct. 12, 2011 Weekly shock/impact tests Under construction 

Oct. 12, 2011 10min WN (1.0%g RMS) + 10min WN (1.5%g RMS) Bare building 
structure 

Oct. 13, 2011 - Feb. 23, 2012 Daily 10min ambient vibration Installation of NCSs 

Feb. 23, 2012 10min WN (1.0%g RMS) + 10min WN (1.5%g RMS) Complete building 

  RMS: root-mean-

 Figure 3.3 shows the time histories and Fourier amplitude spectra (FAS) of the 

total acceleration response recorded at the foundation and roof levels of the structure 

from ambient vibration, white noise, and shock tests conducted in October 2011. 

Regarding the shock tests, each time they were performed, different impact locations 

were considered in order to excite different modes. In general, the shocks were applied at 

two different heights (an intermediate and the highest constructed levels) of the specimen 

under construction and at four different locations in plan (center of north-south and east-

west sides and south-east and south-west corners). 
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Figure 3.3: Time histories and Fourier amplitude spectra (FAS) of the total acceleration 
responses recorded at foundation and roof levels during (a) ambient vibration test 
(October 19, 2011), (b) white noise base excitation test (1.0%g RMS, October 12, 2012), 
and (c) shock-induced free vibration test (October 12, 2011). 

The complete test protocol provided dynamic data to analyze the effects of the 

construction process, NCSs, and structural/non-structural damage on the modal dynamic 

properties of the building specimen. In the next sections, the system identification results 

obtained from the data collected between August 18, 2011 and February 23, 2012 are 

presented and analyzed to investigate the effects of the construction process and NCSs. 

3.4. System identification methods used 

To estimate the modal properties of the building specimen at different 

construction stages, three state-of-the-art output-only system identification methods, all 

assuming broad-band and uncorrelated random process excitation (i.e., input is a white 

noise process), were used with the ambient vibration data. The modal properties were 

identified using ten-minute long datasets of ambient vibration. The output-only methods 

used were the Data-Driven Stochastic Subspace Identification (SSI-DATA) (Van 

Overschee and De Moor 1996), the Multiple-Reference Natural Excitation Technique 

combined with Eigensystem Realization Algorithm (NExT-ERA) (Juang and Pappa 

1985), and the Enhanced Frequency Domain Decomposition (EFDD) (Brinker et al. 
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2001a,b). For the low-amplitude white noise base excitation test data, in addition to the 

three abovementioned output-only methods, two input-output methods were employed. 

The input-output methods used were the Deterministic-Stochastic Subspace Identification 

(DSI) (Van Overschee and De Moor 1996) and the Observer/Kalman Filter Identification 

combined with Eigensystem Realization Algorithm (OKID-ERA) (Juang 1994). For each 

white noise base excitation test, one ten-minutes long dataset was used to estimate the 

modal parameters. 

It is important to note that all the system identification methods used in this work 

assume a linear time-invariant dynamic model of the test specimen with all sources of 

energy dissipation represented by linear viscous damping, herein termed equivalent 

viscous damping. Consequently, the identified natural frequencies and damping ratios 

correspond to the modal parameters of an equivalent linear elastic model of the test 

structure. In the next sub-sections, a brief description of each method is provided. 

3.4.1. Data-Driven Stochastic Subspace Identification (SSI-DATA) 

SSI-DATA is a time-domain system identification method that extracts a linear 

state-space model (see Appendix A for details and derivations) of the system from 

output-only measurement data (Van Overschee and De Moor 1996). Contrary to the two-

stage time-domain methods (such as SSI-COV or NExT-ERA), SSI-DATA does not 

require computing the covariance matrices of the data and it is numerically more robust 

because it does not need to square up the output data (Peeters and De Roeck 2001b). In 

addition, robust numerical techniques such as QR factorization, singular value 

decomposition, and least squares are involved in this method. 
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To reduce the computational demands of the identification process, the 

acceleration time series were resampled at 60 Hz. The output Hankel matrices were 

constructed using 25 block rows with the number of rows per block equal to the number 

of output channels (variable depending on the stage of construction) and 35,951 columns 

(making use of the entire 10 minutes of data decimated at 60 Hz). Stabilization diagrams 

were used for all system identification methods based on state-space representation (SSI-

DATA, NExT-ERA, DSI, and OKID-ERA) to select the order of the identified model. 

Values suggested in the literature were used for the stability criteria of the modal 

parameters (e.g. Peeters and De Roeck 2001b): 

 ( )1% 5% 100 2% 6
i ji j j i j j , sf f f ξ ξ ξ 1-MAC nφ φ− ≤ − ≤ ≤ ≥  (3.1) 

where ,i if ξ  and ,j jf ξ  are the identified natural frequencies and damping ratios for models 

of consecutive orders, 
i j,MACφ φ  is the modal assurance criterion (Allemang and Brown 

1982) of a pair of corresponding modes shapes identified for models of consecutive 

orders, and ns denotes the number of consecutive times (as the model order is increased 

progressively by increments of 2) that an identified mode satisfies the triple stability 

criterion defined in Equation (3.1). 

3.4.2. Multiple-Reference Natural Excitation Technique combined with 

Eigensystem Realization Algorithm (NExT-ERA) 

The NExT is based on the fact that the theoretical cross-correlation function of the 

measured response along two different degrees of freedom of a structure subjected to 

broad-band excitation has the same analytical form as the free vibration response of the 
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structure (James et al. 1993). Once an estimation of the cross-correlation function is 

obtained for a given reference channel, the ERA method can be used to estimate the 

modal parameters. In order to avoid selecting a reference channel that may coincide with 

a modal node, a vector of reference channels can be used (He et al. 2009). In this study, 

the cross-correlation functions were computed through inverse Fourier transformation of 

the corresponding cross-power spectral density functions, which were estimated using 

Welch’s method with a Hanning window of length 1/8 of the total length of the signal 

and 50% of overlap between windows. For the ERA method, the cross-correlation 

functions were downsampled to 60 Hz and used to construct Hankel matrices with 150 

block rows (the number of rows per block was equal to the number of output channels, 

which varied depending on the stage of construction) and 150 columns (i.e., considering 

150 time lag values). 

3.4.3. Enhanced Frequency Domain Decomposition (EFDD) 

The Frequency Domain Decomposition (FDD) method was introduced by 

Brincker et al. (2001a) and it corresponds to an extension of the peak-picking method. 

The EFDD method (Brinker et al. 2001b) estimates the modal properties of a system 

from the singular value decomposition of the cross-power spectral density matrix of the 

measured outputs, since the singular values can be interpreted as the auto-spectral 

densities of the modal coordinates and the singular vectors as the modes shapes. Taking 

the auto-spectral density back to the time domain by inverse Fourier transformation, the 

damping ratio and natural frequency can be determined from the resulting single-degree-

of-freedom auto-correlation function (ACF). In the implementation of the EFDD method, 
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the measured acceleration time series were resampled at 80 Hz and the cross-power 

spectral density functions were estimated using Welch’s method with a Hanning window 

of length 1/4 of the total length of the signal and 50% of overlap between windows. 

3.4.4. Deterministic-Stochastic Subspace Identification (DSI) 

The Deterministic-Stochastic Subspace Identification (DSI) method, a time-

domain technique, was developed by Van Overschee and De Moor (1996). It considers a 

linear time-invariant dynamical system excited by external input and which includes both 

process and measurement noises. It extracts a linear state-space model of the system from 

a Hankel block matrix constructed from the input-output recorded data. Then, assuming 

that (i) the deterministic input and the process and measurement noises are uncorrelated, 

(ii) the deterministic input is persistently exciting, and (iii) the process and measurement 

noises are not identically zero, DSI estimates the matrices of the state-space model using 

the same numerical techniques as SSI DATA. In applying DSI to this study, the measured 

acceleration time histories were resampled at 60 Hz and the Hankel matrices were 

constructed using 15 block rows with 21 (1 input and 20 output channels) rows per block 

and 35,971 columns. 

3.4.5. Observer/Kalman Filter Identification Combined with Eigensystem 

Realization Algorithm (OKID-ERA) 

This time-domain method was developed by Juang et al. (1991). It introduces a 

feedback loop (observer) to make the identified system as stable as desired by 

introducing prescribed eigenvalues for the observer, in order to compute both the system 
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and observer Markov parameters from the input-output recorded data. Then, the state 

space model is estimated using the Markov parameters following the ERA method. 

Similarly to the previous method, the recorded acceleration time series were resampled at 

60 Hz to reduce the computational burden. An output matrix of 20 (number of output 

channels) rows and 2000 columns (corresponding to 33 sec of data decimated at 60 Hz) 

and an input-output matrix of ( ) ( )1 20 1 250 5251r m r p+ + = + + =  rows (r = number of 

input channels, m = number of output channels, and p = integer such that 

fork   k p≈ ≥CA B 0 , where , , and   A B C  denote the state, input, and output matrices of 

the system with the observer) and 2000 columns were constructed with the recorded 

input-output data of each white noise base excitation test. 

3.5. Evolution of the Identified Modal Properties during Construction 

Using the temporary accelerometer array showed in Figure 3.1a (black arrows), 

vibration response data of the building structure were recorded under ambient vibrations 

during its construction (August 18 – October 12, 2011) and under low-amplitude white 

noise base excitation tests performed on the building in its bare building structure 

condition (October 12, 2011). The effects of six main activities of the construction 

process (Table 3.2) were analyzed. The bottom row of Figure 3.4 shows the time 

evolution of the construction in terms of these six activities, while the first four rows of 

the same figure graph the temporal evolution of the natural frequencies and damping 

ratios of the first four modes of the structure identified using SSI-DATA, NExT-ERA, 

and EFDD during the construction process (August 18 to October 11, 2011). Clearly, 
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since the structure became more flexible as the construction progressed, the natural 

frequencies decreased with time. 

Table 3.2: Main construction activities. 

Name Activity 
A1 Formwork and shoring of slab 
A2 Installation of steel reinforcement cage and placement of concrete slab 
A3 Formwork of columns and walls 
A4 Installation of steel reinforcement cage and placement of concrete walls and columns 
A5 Shoring removal 
A6 Installation of stairs 

 
Figure 3.4: Temporal evolution of the natural frequencies and damping ratios of the first 
four modes identified with ambient vibration data during construction. 

The actions inducing the most abrupt changes in the natural frequencies were the 

placement of concrete of the fifth floor and roof slabs (A2) (September 6 and September 

22, 2011, respectively) and the placement of concrete of the columns and shear walls 

(A4) at levels four and five  (August 24 and September 8, 2011, respectively). This is due 
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to the fact that both activities significantly increased the mass of the building without 

changing its lateral stiffness and therefore decreased the natural frequencies. The 

magnitude of the jumps in the variation of the natural frequencies due to placement of 

concrete reduces as construction progresses, since the added mass becomes progressively 

lower as compared to the total mass of the built portion of the building. On the other 

hand, as expected, the effect of formwork and shoring (A1 and A3) is negligible because 

their masses were negligible compared to the total mass of the structure and they did not 

contribute to the lateral stiffness of the building. Similarly, stair installation (A6) and 

shoring removal (A5) did not induce any noticeable change in the dynamic properties of 

the building due to the same reasons as for activities A1 and A3. Finally, it is observed 

that, from September 26 to October 10, 2011, the natural frequencies gradually increased 

(1.82 to 1.92, 1.84 to 1.94, 2.52 to 2.68, and 6.12 to 6.61 Hz for the first, second, third, 

and fourth modes, respectively), which is most likely due to the hardening of concrete 

(during the curing process) over time and corresponding stiffness gain. This effect has 

also been detected in previous studies (Kanazawa et al. 2008, Tian and Yi 2008). Table 

3.3 summarizes the changes in natural frequencies due to each of the construction 

activities inducing important changes in the identified natural frequencies. 

Regarding the equivalent damping ratios, their values mostly lie in the range 0.5-

2.5% for all modes identified using ambient vibration data, which is consistent with 

previous studies (e.g., Skolnik et al. 2006, Nayeri et al. 2008, Moaveni et al. 2011). 

However, as well known, the scatter of the damping estimates is inherently significantly 

higher than that of the corresponding natural frequencies, thus making it difficult to draw 

any conclusions about the effect of the construction activities on the identified modal 
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damping ratios. Also, it is observed that the agreement between the damping ratios 

identified from different methods is better for the lower than for the higher modes. 

Furthermore, the damping ratios estimated by EFDD are most often lower than those 

identified using NExT-ERA and SSI-DATA, and more so for the modes with a relatively 

low contribution to the measured response (here higher modes), which is consistent with 

previous studies (e.g., He et al. 2009, Antonacci et al. 2011). 

Table 3.3: Natural frequencies identified using SSI-DATA with ambient vibration data 
before and after major construction activities. 

Activity Date 
Natural frequency (Hz) 

Mode 1 
1-T+To 

Mode 2 
1-L 

Mode 3 
1-To 

Mode 4 
2-L 

Level 4 - Placement of concrete 
of columns and walls 

08/23/11 Before 3.18 3.27 4.71 11.48 
08/25/11 After 2.74 2.80 3.73 9.63 

Level 5 - Placement of concrete 
of slab 

09/01/11 Before 2.69 2.82 3.60 8.00 
09/07/11 After 2.27 2.33 3.27 7.94 

Level 5 - Placement of concrete 
of columns and walls 

09/07/11 Before 2.27 2.33 3.27 7.94 
09/09/11 After 2.06 2.14 2.85 7.56 

Roof - Placement of concrete of 
slab 

09/16/11 Before 2.08 2.13 2.76 6.87 
09/23/11 After 1.82 1.85 2.51 6.14 

Hardening of concrete 09/26/11 Before 1.82 1.84 2.52 6.12 
10/10/11 After 1.92 1.94 2.68 6.61 

Figure 3.5 shows the evolution of the first four mode shapes identified using 

NExT-ERA with ambient vibration data after the concrete of slabs of the second, third, 

fourth, and roof levels was placed. During the entire construction process, the first, 

second, third, and fourth modes corresponded to the first transverse-torsional (1-T+To), 

first longitudinal (1-L), first torsional (1-To), and second longitudinal (2-L) modes, 

respectively. The identified modes remained basically with the same shapes and 

proportions during the construction process. Since the mode shapes identified with the 

system identification methods used in this work are complex-valued, the real-valued 

mode approximations were computed using the method proposed by Imregun and Ewins 
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(1993), which obtains a real-valued mode by maximizing the MAC value between the 

complex mode and its corresponding realized real mode. 

 
Figure 3.5: Evolution of the first four mode shapes identified using NExT-ERA with 
ambient vibration data during construction. 

3.6. System Identification of the Bare Building Structure 

A first set of dynamic tests was performed using the shake table on the building 

specimen in its bare condition on August 12, 2011. The low-amplitude banded (0.25 to 

25 Hz) white noise acceleration consisted of two 10 minute long signals, with nominal 

root-mean-square (RMS) amplitudes of 1.0 and 1.5% g, respectively. The modal 

properties of the bare building structure were estimated using the output-only system 

identification methods described previously, i.e., SSI-DATA, NExT-ERA, and EFDD. 

The methods were applied to the vibration response data from white noise base excitation 

tests and ambient vibrations, the latter recorded before and after the shake table tests. 
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Additionally, modal parameters were also identified using the input-output methods with 

the vibration data from the white noise base excitation tests. 

Table 3.4 reports the natural frequencies and equivalent damping ratios for ten 

modes of the bare building structure identified using five methods from the white noise 

base excitation test data with RMS = 1.0 and 1.5% g. Table 3.4 also provides the sample 

mean and coefficient-of-variation (c.o.v.) of the modal parameter estimates across the 

five methods. The natural frequencies identified by different methods for the same level 

of excitation are in very good agreement, with maximum and average relative differences 

of 4.3% and 0.9%, respectively. The identified damping ratios exhibit significantly higher 

method-to-method variability (which is consistent with previous studies, e.g., Ndambi et 

al. 2000, Moaveni et al. 2011), with maximum and average absolute relative differences 

of 121.3% and 31.3%, respectively. These relative differences are computed taking the 

mean value over all the SID methods as the reference value. 

Using ambient vibration data, the identified first and second modes correspond to 

the 1-T+To and 1-L modes, respectively, while this order changes when using white 

noise base excitation test data. This mode-crossing phenomenon is caused by the 

reduction in stiffness of the building in its longitudinal direction (direction of shake table 

motion) during the white noise base excitation test. Therefore, the natural frequency of 

the first longitudinal mode to become lower than the natural frequency of the first 

coupled transverse-torsional mode. It is noticed that the input-output methods provide 

consistently lower estimates of damping  than the output-only methods (excluding EFDD 

which typically produces low values of damping as observed earlier), especially for the 

first mode of vibration. 
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The relative differences (in %) between natural frequencies identified from 

vibration data due to white noise base excitation with RMS = 1.5% g and RMS = 1.0% g, 

as well as the sample means and coefficients of variation, are reported in Table 3.5 for the 

five system identification methods used. The identified natural frequencies decrease as 

the amplitude of the excitation increases from RMS = 1.0% g to RMS = 1.5% g. Despite 

these differences are not high (less than 3.5% on average), they clearly show the effect of 

concrete cracking and the consequent loss of stiffness during the white noise base 

excitation tests. 

Table 3.4: Natural frequencies and damping ratios of the bare building structure 
identified from white noise base excitation test data. 

  Natural frequency (Hz)  Equivalent damping ratio (%) 

 Mode SSI-
DATA 

NExT
-ERA EFDD DSI OKID

-ERA Mean c.o.v. 
(%)  SSI-

DATA 
NExT
-ERA EFDD DSI OKID

-ERA Mean c.o.v. 
(%) 

W
hi

te
 N

oi
se

 R
M

S 
= 

1.
0%

g 

1 (1-L) 1.82 1.83 1.84 1.87 1.86 1.84 1.0  5.16 5.80 2.22 1.13 3.36 3.53 49.5 

2 (1-T+To) 1.88 1.87 1.95 1.90 1.90 1.90 1.4  1.30 1.44 2.74 0.78 1.36 1.52 42.9 

3 (1-To) 2.63 2.63 2.64 2.63 2.63 2.63 0.2  0.93 1.02 0.44 0.97 1.42 0.96 32.8 

4 (2-L) 6.29 6.29 6.35 6.51 6.34 6.36 1.3  3.77 2.74 2.48 1.00 1.08 2.21 47.5 

5 (2-L+To) 6.43 6.32 6.80 - 6.53 6.52 2.7  1.11 0.94 2.42 - 1.07 1.38 43.3 

6 (2-To) 10.67 10.68 10.99 10.69 10.89 10.78 1.2  1.04 1.81 0.77 1.62 2.66 1.58 41.8 

7 (3-L) 12.22 12.20 12.15 12.00 12.00 12.11 0.8  1.52 1.70 1.28 1.03 1.04 1.31 20.1 

8 (3-To) 13.53 13.39 13.98 13.45 13.47 13.56 1.6  0.75 0.27 1.39 0.89 0.52 0.76 49.3 

9 (4-L) 18.59 18.64 18.82 18.49 18.64 18.64 0.6  2.34 2.02 2.18 1.64 1.45 1.93 17.3 

10 (5-L) 23.19 23.55 23.29 23.44 23.29 23.35 0.5  1.65 2.16 0.85 1.81 0.57 1.41 42.6 
                 

W
hi

te
 N

oi
se

 R
M

S 
= 

1.
5%

g 

1 (1-L) 1.75 1.73 1.76 1.83 1.83 1.78 2.4  6.32 3.76 5.15 1.39 3.47 4.02 41.5 

2 (1-T+To) 1.89 1.87 1.86 1.89 1.88 1.88 0.6  1.29 1.07 3.94 1.16 1.44 1.78 61.0 

3 (1-To) 2.60 2.62 2.62 2.61 2.60 2.61 0.3  1.06 1.33 0.59 1.10 1.30 1.08 24.8 

4 (2-L) 6.21 6.05 6.23 6.38 6.28 6.23 1.7  3.84 1.61 1.81 0.88 1.18 1.86 55.8 

5 (2-L+To) 6.40 6.17 6.36 6.45 6.42 6.36 1.6  0.77 2.82 2.45 0.99 0.59 1.52 60.6 

6 (2-To) 10.64 10.61 10.67 10.61 10.79 10.66 0.6  2.37 1.87 1.07 1.88 3.18 2.07 33.4 

7 (3-L) 12.11 12.12 12.39 11.79 11.93 12.07 1.7  2.70 2.87 1.26 2.33 2.06 2.24 25.4 

8 (3-To) 13.48 - 13.33 13.43 - 13.42 0.5  0.75 - 0.71 0.66 - 0.71 5.3 

9 (4-L) 18.46 18.51 18.70 18.25 18.29 18.44 0.9  2.13 1.59 2.97 1.61 1.63 1.99 26.8 

10 (5-L) 23.19 22.92 23.05 23.00 23.14 23.06 0.4  1.48 1.72 1.87 1.38 1.28 1.55 14.1 

L: longitudinal / T: transverse /  To: torsional 
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Table 3.5: Relative differences (in %) between natural frequencies of the bare building 
structure identified from white noise base excitation test data with RMS = 1.5% g and 
RMS = 1.0% g (used as reference). 

Mode SSI-
DATA 

NExT-
ERA EFDD DSI OKID-

ERA 
Mean          
(%) 

c.o.v.            
(%) 

1 (1-L) -3.8 -5.5 -4.4 -2.1 -1.6 -3.5 41.0 
2 (1-T+To) 0.5 0.0 -4.5 -0.5 -1.1 -1.1 161.5 
3 (1-To) -1.1 -0.4 -0.9 -0.9 -1.1 -0.9 30.8 
4 (2-L) -1.3 -3.8 -1.8 -2.0 -0.9 -2.0 50.6 
5 (2-L+To) -0.5 -2.4 -6.5 - -1.7 -2.7 82.0 
6 (2-To) -0.3 -0.7 -2.9 -0.7 -0.9 -1.1 84.8 
7 (3-L) -0.9 -0.7 1.9 -1.7 -0.6 -0.4 318.9 
8 (3-To) -0.4 - -4.6 -0.1 - -1.7 121.0 
9 (4-L) -0.7 -0.7 -0.6 -1.3 -1.9 -1.0 46.0 
10 (5-L) -0.0 -2.7 -1.0 -1.9 -0.6 -1.2 75.3 

The loss of stiffness during white noise base excitation tests is confirmed by 

comparing in Table 3.6 the natural frequencies identified from ambient vibration data 

recorded before and after the white noise tests. The natural frequencies identified using 

ambient vibrations before and after the white noise tests are practically the same, but are 

higher than their counterparts identified during the white noise base excitation tests. 

Additionally, the first two modes cross again, and the order of the modes identified 

before the white noise tests is recovered. This indicates that the concrete members 

cracked during the white noise tests; however, the amplitude of the ambient vibrations is 

small and not sufficient to re-open (a large majority of) the cracks, which remained 

closed due to gravity effects. Moreover, by comparing the damping ratios identified using 

ambient vibration and white noise base excitation data (Figure 3.6), it is observed that the 

identified damping ratios of the longitudinal modes (1-L and 2-L) increase as the 

amplitude of the excitation increases, while the identified damping ratios of other modes 

do not experience much variation. This is due to the fact that during the white noise base 
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excitation tests, more hysteretic energy dissipation is identified as equivalent damping 

ratios of the modes in the direction of the shake table excitation. 

Table 3.6: Natural frequencies (Hz) of the bare building structure identified with ambient 
vibration data recorded before and after white noise base excitation tests. 

Mode 

Before white noise tests 
(October 12, 2011) 

After white noise tests 
(October 13, 2011) 

SSI-
DATA 

NExT-
ERA EFDD SSI-

DATA 
NExT-
ERA EFDD 

1 (1-L) 1.91 1.90 1.93 1.90 1.92 1.92 
2 (1-T+To) 1.89 1.89 1.92 1.88 1.88 1.91 
3 (1-To) 2.66 2.68 2.73 2.63 2.63 2.72 
4 (2-L) 6.36 6.36 6.39 6.16 6.15 6.18 
5 (2-L+To) 6.55 6.59 6.71 6.53 6.49 6.65 
6 (2-To) 10.83 10.84 11.07 10.77 10.73 10.85 
7 (3-L) 12.01 12.07 12.05 11.97 11.70 11.71 
8 (3-To) 13.43 13.46 13.68 13.63 13.61 14.12 
9 (4-L) 18.96 18.75 18.82 18.40 18.73 18.82 
10 (5-L) 24.19 23.30 23.29 23.76 23.50 23.93 

 
Figure 3.6: Equivalent damping ratios of the bare building structure identified using SSI-
DATA with ambient vibration (recorded before and after white noise tests) and white 
noise base excitation data. 

Figure 3.7 shows the mode shapes identified using NExT-ERA based on the first 

white noise base excitation test data (RMS = 1.0% g). These modes correspond to the 

first five longitudinal (1-L, 2-L, 3-L, 4-L, and 5-L), the first two coupled translational-

torsional (1-T+To, 2-L+To), and the first three torsional (1-To, 2-To, and 3-To) modes. 
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Figure 3.7: Mode shapes of the bare building structure identified from white noise base 
excitation test data (RMS = 1.0% g) using NExT-ERA. 

The polar plot representation of the identified mode shapes (Figure 3.8) informs 

about the level of non-classical damping in the identified modes. Most of the identified 

modes are estimated as almost purely classically damped, since all the vectors in their 

polar plot are close to collinear. However, modes 1-T+To, 2-L+To, and 5-L are estimated 

with a significant level of non-classical damping. It is worth mentioning that estimation 

errors (due to measurement noise, modeling errors, etc.) can introduce non-classical 

damping characteristics in the identification of a classically damped mode. 

 
Figure 3.8:  Polar plots of complex mode shapes of the bare building structure identified 
using OKID-ERA from RMS = 1.0% g white noise base excitation test data. 

In order to compare the mode shapes identified using the five different methods, 

Figure 3.9 shows the MAC values between identified mode shapes. High MAC values 

(close to one) indicate that the mode shapes identified using different methods are in very 

good agreement. It is noticed that the MAC values between modes 4 (2-L) and 5 (2-

L+To) are significant, reaching values around 0.5. This is most likely due to the fact that 

these two modes are dominated by their longitudinal components and they differ 

primarily in their torsional components (see Figure 3.7). 
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Figure 3.9: MAC values between the mode shapes of the bare building structure 
identified using five different methods from RMS = 1.5% g white noise base excitation 
test data. 

The modal parameters were also estimated with the shock-induced free vibration 

data using the ERA method. As explained in Section 3.3.2, between eight and eighteen 

shocks tests were performed during each day of testing in order to excite as many modes 

as possible. Table 3.7 reports the natural frequencies and damping ratios of the bare 

building structure identified using the free vibration data recorded before the white noise 

base excitation tests. The natural frequencies are very similar to those identified using 

ambient vibration data (see Table 3.6), while the damping ratios are between the values 

estimated using ambient vibration and white noise base excitation test data (see Table 3.4 

and Table 3.6). As observed from Figure 3.3, the amplitude of the shock-induced 

maximum acceleration response lies between the RMS amplitude of the acceleration 

response from the ambient vibration and WN base excitation tests, respectively. 
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Table 3.7: Natural frequencies and damping ratios of the bare building structure 
identified from shock-induced free vibration data. 

Mode Natural frequency (Hz) Damping ratio (%) 
1 (1-L) 1.92 4.15 
2 (1-T+To) 1.89 1.07 
3 (1-To) 2.64 1.65 
4 (2-L) 6.37 0.77 
5 (2-L+To) 6.63 1.12 
6 (2-To) 10.93 1.75 
7 (3-L) 12.00 1.08 
8 (3-To) 13.51 2.21 
9 (4-L) 18.38 1.93 
10 (5-L) 24.14 1.56 

3.7. Effects of Nonstructural Components 

During the installation of the NCSs, daily ambient vibration data were recorded. 

Additionally, low-amplitude white noise base excitation tests were conducted when the 

building, including all the NCSs, was completed on February 23, 2012. Figure 3.10 

presents the evolution of the natural frequencies and damping ratios of the first three 

modes of the building identified using the SSI-DATA, NExT-ERA, and EFDD methods 

and ambient vibration data during the period of installation of the NCSs, i.e., October 13, 

2011, to February 22, 2012. The bottom panels show the Gantt chart with the activities 

regarding the installation of the main NCSs defined in Table 3.8. 

Figure 3.10 shows that there is a good agreement between the natural frequencies 

identified using SSI-DATA, NExT-ERA, and EFDD, while the identified damping ratios, 

ranging between 0.4 and 2.0%, exhibit a much higher method-to-method variability. As 

already mentioned, the damping ratios estimated by EFDD are most often lower than 

those identified using NExT-ERA and SSI-DATA. 
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Table 3.8: Main NCSs installed in the building. 
Name  NCSs Name NCSs 

C1 Partition walls (elevator shaft) C9 Precast cladding (levels 4 and 5) 
C2 Partition walls (stair shaft: levels 1 to 3) C10 Elevator counterweight and rails 
C3 Partition walls (stair shaft: levels 4 and  5) C11 Interior partitions (levels 4 and 5) 
C4 Balloon framing C12 Ceilings 
C5 Penthouse C13 Sprinkler system (level 5) 
C6 Interior partitions (levels 1 to 3) C14 Roof and gas pipes (level 4) 
C7 Cooling tower C15 Contents (levels 2, 4 and 5) 
C8 AHU C16 Elevator cabin 

 
Figure 3.10: Evolution of the natural frequencies and damping ratios of the first three 
modes identified during installation of the main NCSs. 

The influence of the partition walls on the lateral stiffness of the building can be 

observed from the variation of the identified modal frequencies during the installation of 
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NCSs. Due to the installation of partition walls around the elevator shaft (C1) and the 

stair shaft (C2 and C3) between October 13 and October 21, 2011, the first, second, and 

third identified natural frequencies increased from 1.88 to 1.94 Hz, 1.90 to 1.96 Hz, and 

2.63 to 2.67 Hz, respectively. This indicates that C1 to C3 increase the initial lateral 

stiffness of the building by about 6%. Later, between December 5 and December 19, 

2011, the natural frequencies of the first three modes increased from 1.91 to 2.10 Hz, 

1.96 to 2.15 Hz, and 2.68 to 3.01 Hz, respectively, as a result of the installation of the 

interior partitions on the first, second, and third levels (C6). Within the same time 

window, the roof-mounted equipment, i.e., cooling tower (C7) and AHU (C8), was 

installed, but the added stiffness of the partition walls overshadowed the effect of the 

added mass due to the roof-mounted equipment and the partition walls, and the first three 

natural frequencies increased. This indicates that interior partition walls on the bottom 

three floors further increase the initial lateral stiffness of the building by approximately 

20%.  Finally, from January 10 to February 10, 2012, these natural frequencies gradually 

increased due to the installation of the partition walls on the fourth and fifth levels (C11). 

During this time window, the effect of the added mass contributed by the elevator 

counterweight and rails (C10), pipes (C14), new partition walls and building contents 

(C15) was more than compensated by the stiffening effect of the new partition walls. 

Furthermore, it appears from the RHS of Figure 3.10, with special attention to C1-C3, C6 

and C11, that the partition walls also slightly increase the identified equivalent viscous 

damping ratios of the first three modes. Similar results have been reported in previous 

studies (e.g., Kanazawa et al. 2008, Devin and Fanning 2012). Comparison of the 

damping ratios identified for the bare structure (see RHS of Figure 3.4) and the complete 



www.manaraa.com

72 
 

building (see RHS of Figure 3.10) indicates that the average damping ratios of the first 

three modes increased from 0% (1-To mode) to 40% (1-T+To mode) due to the NCSs. 

However, it is noteworthy that the modal damping coefficients 2n n n nC Mξ ω=  also 

increase from the bare structure to the complete building through the increase of the 

modal mass nM  and natural frequency nω  of the dominant modes.  

Between December 19 and December 20, 2011, the first three modal frequencies 

decreased from 2.15 to 2.00 Hz, 2.18 to 2.06 Hz, and 3.01 to 2.63 Hz, respectively, due to 

the placement of the precast concrete cladding panels (C9) on the south and west faces of 

the building at the fourth and fifth levels. From December 20 to December 22, 2011, the 

same frequencies further decreased from 2.00 to 1.85 Hz, 2.06 to 1.91 Hz, and 2.63 to 

2.55 Hz, respectively, when the precast concrete cladding panels (C9) on the north and 

east building facades were installed. As mentioned in Section 3.2.2, the precast concrete 

cladding panels mainly added mass to the building system. However, they did not 

contribute significantly to the lateral stiffness of the building due to their sliding 

connections (for in-plane motions) at the top. The system identification results also show 

that the addition of the balloon framing (C4) between November 2 and November 23, 

2011, moderately increased the first three modes natural frequencies from 1.88 to 1.93 

Hz, 1.93 to 2.00 Hz, and 2.62 to 2.70 Hz, respectively, thus indicating that the stiffening 

effect of the relatively light balloon framing dominated its inertial effect. Installation of 

the ceilings (C12), penthouse (C5), and elevator cabin (C16) did not induce any 

noticeable effects on the modal properties of the building or their effects were negligible 

compared to those induced by other NCSs installed at the same time. 
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As a general trend during the entire period of installation of the NCSs, it can be 

observed that the damping ratios tend to slightly increase over time, but this trend is 

hidden by the large variability (estimation uncertainty) of the identified damping ratios. 

Most of this additional source of damping is most likely produced by the kinematic 

interaction between some NCSs and the structural skeleton. It is worth recalling that since 

the underlying mathematical model of the structure assumed by the system identification 

methods used herein only considers linear viscous damping, all actual sources of energy 

dissipation of the building structure are identified as equivalent linear viscous damping 

ratios. 

3.8. System Identification of the Complete Building 

After all the NCSs were installed in the building (complete building), a second set 

of dynamic tests using the shake table was performed on February 23, 2012. The same 

sequence of two banded (0.25 to 25.00 Hz) white noise base excitation tests (RMS = 

1.0% g and 1.5% g) was applied three times to the complete building considering 

different positions of the elevator cabin. In the first configuration, the elevator cabin and 

counterweight were located at the bottom and top levels of the building, respectively. In 

the second configuration, the cabin and counterweight were located at the same level (at 

mid-height of story 3) in order to concentrate the mass of the elevator system. Finally, in 

the third configuration, the cabin and counterweight were located at the top and bottom 

levels of the building, respectively. The modal parameters were estimated using the 

output-only and input-output methods with the recorded data obtained from the white 
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noise base excitation tests. Additionally, output-only methods were used with the ambient 

vibration data recorded before and after the shake table white noise tests. 

Table 3.9 shows the natural frequencies and damping ratios for ten modes of the 

complete building structure with elevator under configuration 1 (counterweight at the top 

of the building) identified using the white noise base excitation test data. It is important to 

note that the identification results obtained for the other two configurations of the 

elevator system do not differ significantly from those for configuration 1, with 

differences less than 3% for the natural frequencies and less than 15% for the damping 

ratios. Consequently, it can be concluded that the position of the elevator does not have 

any important effect on the modal properties of the first ten modes of the complete 

building. 

From Table 3.4 and Table 3.9, it is observed that the natural frequencies of modes 

1-L, 1-T+To, 1-To, 2-To, 3-L, and 3-To decrease by 1% to 9% from the bare building 

structure to the complete building, while the reverse is true for modes 2-L, 2-L+To, 4-L, 

and 5-L as their natural frequencies increase by 1% to 18%. This observation applies for 

both levels of white noise base excitation (RMS = 1.0% g and 1.5% g). On the other 

hand, the estimated damping ratios increase from the bare building structure to the 

complete building for all the modes identified, with increments ranging from 15% to 

191%. These results provide a near real-world example on the effects of the NCSs on the 

modal properties of a building. First, the additional stiffness and masses provided by the 

NCSs change, increasing or decreasing, the modal frequencies of the bare building 

structure, and second, the NCSs increase the equivalent modal damping ratios of the bare 

building structure, due to the additional sources of energy dissipation provided by the 
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NCSs themselves and the kinematic interaction between the NCSs and the supporting 

structure. 

Table 3.9: Natural frequencies and damping ratios of the complete building 
(configuration 1) identified from white noise base excitation test data. 

  Natural frequency (Hz)  Equivalent damping ratio (%) 

 Mode SSI-
DATA 

NExT
-ERA EFDD DSI OKID

-ERA Mean c.o.v. 
(%)  SSI-

DATA 
NExT
-ERA EFDD DSI OKID

-ERA Mean c.o.v. 
(%) 

W
hi

te
 N

oi
se

 R
M

S 
= 

1.
0%

g 

1 (1-L) 1.74 1.72 1.71 1.82 1.83 1.76 2.8  4.94 4.22 4.15 4.58 4.17 4.41 7.0 

2 (1-T+To) 1.85 1.90 1.86 1.86 1.89 1.87 1.1  3.55 1.54 4.24 3.04 3.73 3.22 28.7 

3 (1-To) 2.52 2.52 2.57 2.52 2.52 2.53 0.7  2.34 2.54 0.99 2.82 3.52 2.44 34.0 

4 (2-L) 6.93 7.04 7.08 7.00 6.98 7.01 0.7  7.75 0.76 1.63 4.35 4.62 3.82 64.6 

5 (2-L+To) 7.17 8.00 7.69 7.93 - 7.70 4.2  0.80 1.11 3.25 5.67 - 2.71 72.2 

6 (2-To) 10.38 10.11 - - - 10.25 1.3  2.30 2.39 - - - 2.35 1.9 

7 (3-L) 11.50 11.77 12.05 11.68 11.57 11.71 1.7  1.83 4.23 1.98 4.89 6.17 3.82 44.1 

8 (3-To) 12.52 12.76 - 12.62 - 12.63 0.8  1.08 0.77 - 1.62  - 1.16 30.4 

9 (4-L) 18.81 18.72 18.60 18.68 19.42 18.85 1.6  7.50 3.37 2.08 3.36 2.44 3.75 51.8 

10 (5-L) 23.60 23.62 24.00 23.69 24.44 23.87 1.3  5.23 6.51 1.06 3.63 0.52 3.39 68.4 
                 

W
hi

te
 N

oi
se

 R
M

S 
= 

1.
5%

g 

1 (1-L) 1.55 1.58 1.58 1.71 1.70 1.62 4.1  6.28 6.04 5.95 4.36 5.07 5.54 13.0 

2 (1-T+To) 1.81 1.81 1.82 1.81 1.83 1.82 0.4  4.17 3.38 4.66 3.81 1.19 3.44 34.9 

3 (1-To) 2.51 2.52 2.52 2.46 2.39 2.48 2.0  2.81 2.04 2.65 3.68 2.55 2.75 19.4 

4 (2-L) 6.68 6.81 6.75 6.74 6.79 6.75 0.7  2.28 1.13 2.46 4.13 4.90 2.98 45.5 

5 (2-L+To) 7.25 6.94 7.22 7.20 7.09 7.14 1.6  0.77 0.30 3.05 1.90 2.90 1.78 61.9 

6 (2-To) 9.82 - - 9.94 9.99 9.92 0.7  2.50 - - 3.76 0.88 2.38 49.5 

7 (3-L) 11.63 11.92 11.69 11.38 11.64 11.65 1.5  8.04 1.82 1.92 3.26 2.91 3.59 63.9 

8 (3-To) 12.66 12.62 - 12.56 12.35 12.55 1.0  0.85 0.20 - 0.81 0.67 0.63 40.9 

9 (4-L) 19.22 19.12 19.02 18.66 19.25 19.05 1.1  4.84 2.73 1.50 7.18 8.09 4.87 51.7 

10 (5-L) 23.52 23.50 23.59 23.31 23.59 23.50 0.4  3.71 4.21 1.98 3.37 1.91 3.04 30.7 

L: longitudinal / T: transverse /  To: torsional 

Similar observations to those for the bare building structure can be made for the 

complete building. First, it is noticed that the identified natural frequencies decrease as 

the amplitude of the excitation increases from RMS = 1.0% g to 1.5% g as shown in 

Table 3.10 (analog of Table 3.5 for the bare building structure). The reduction is higher 

than for the bare building structure, reaching almost 8% for the first mode (on average), 

versus 3.5% for the bare building structure. This is due to both cracking in the concrete 
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and change in the significant stiffness contribution of the NCSs (due for example to slight 

relative motions between the structure and the partition walls). 

Table 3.10: Relative differences (in %) between natural frequencies of the complete 
building identified from white noise base excitation test data with RMS = 1.5% g and 
RMS = 1.0% g (used as reference). 

Mode SSI-DATA NExT-ERA EFDD DSI OKID-ERA Mean 
(%)          

c.o.v. 
(%) 

1 (1-L) -10.92 -8.25 -7.60 -5.83 -7.10 -7.94 21.3 
2 (1-T+To) -2.16 -4.74 -2.15 -2.52 -3.17 -2.95 32.9 
3 (1-To) -0.40 0.00 -1.65 -2.37 -5.16 -1.92 95.6 
4 (2-L) -3.61 -3.27 -4.66 -3.71 -2.72 -3.59 17.6 
5 (2-L+To) 1.12 -13.25 -6.14 -9.21 - -6.87 76.5 
6 (2-To) -5.39 - - - - -5.39 - 
7 (3-L) 1.13 1.27 -3.06 -2.57 0.61 -0.52 360.5 
8 (3-To) 1.12 -1.10 - -0.48 - -0.15 616.0 
9 (4-L) 2.18 2.14 2.23 -0.11 -0.88 1.11 119.7 
10 (5-L) -0.34 -0.51 -1.71 -1.60 -3.48 -1.53 73.4 

Table 3.11 shows the first four modes natural frequencies identified using ambient 

vibration data recorded before and after the white noise base excitation tests of February 

23, 2012. It is the analog of Table 3.6 for the bare building structure. It is observed that 

the first four modes natural frequencies remain almost unchanged, are higher than their 

counterparts for the bare building structure (see Table 3.6), and are higher than those 

identified from white noise base excitation test data for the complete building (see Table 

3.9). Similar conclusions are drawn as for the bare building structure, i.e., the concrete 

cracked, and the connections between the structure and non-structural components (e.g., 

partition walls) started to loosen up during the white noise base excitation tests; however, 

this damage initiation appears to be “healed” under subsequent ambient vibrations due to 

gravity effects (preventing a large majority of the cracks to re-open) combined with very 

low amplitude of vibrations. The crossing of the first two modes is observed again. Under 

ambient vibrations, before and after application of the white noise base excitation tests to 
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the complete building, mode 1-T+To has the lowest frequency while during the white 

noise base excitation tests, mode 1-L has the lowest frequency. As explained earlier, this 

effect is due to the loss of stiffness experienced by the building in its longitudinal 

direction (direction of shake table motion) during the white noise base excitation tests. 

On the other hand, damping ratios identified from ambient vibration data are lower than 

those identified from white noise base excitation data (Figure 3.11), as explained in 

Section 3.6 for the bare building structure. However, for the complete building, the 

identified damping ratios of the modes with transverse and torsional components (1-

T+To and 1-To) also increase with increasing amplitude of the excitation because of the 

additional sources of energy dissipation provided by the NCSs and their interaction with 

the supporting structure. 

Table 3.11: Natural frequencies (Hz) of the complete building identified from ambient 
vibration data recorded before and after white noise base excitation tests.  

Mode 

Before white noise tests 
(February 23, 2012) 

After white noise tests 
(February 24, 2012) 

SSI-
DATA 

NExT-
ERA EFDD SSI-

DATA 
NExT-
ERA EFDD 

1 (1-L) 2.08 2.09 2.09 2.03 2.04 2.04 
2 (1-T+To) 1.95 1.95 1.95 1.94 1.95 1.95 
3 (1-To) 2.71 2.70 2.72 2.67 2.68 2.67 
4 (2-L) 7.76 7.71 7.70 7.74 7.72 7.74 

Figure 3.12 shows the mode shapes identified using DSI from the white noise 

base excitation test data with RMS = 1.5% g. The same mode shapes as those 

corresponding to the bare building structure (see Figure 3.7) are identified, i.e., the first to 

fifth longitudinal (1-L, 2-L, 3-L, 4-L, and 5-L), the first two coupled translational-

torsional (1-T+To, 2-L+T) and the first three torsional (1-T, 2-T, and 3-T) modes. This 

indicates that the NCSs did not affect the mode shapes for this level of excitation. 
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Figure 3.11: Equivalent damping ratios of the complete building identified using SSI-
DATA with ambient vibration (recorded before and after white noise tests) and white 
noise base excitation data. 

 
Figure 3.12: Mode shapes of the complete building identified using DSI from white 
noise base excitation test data (RMS = 1.5% g).  

Additionally, the MAC values between the identified mode shapes for the 

different white noise base excitations (RMS = 1.0% g and 1.5% g) were compared for the 

complete building, and were found very close to unity for the corresponding modes. This 

implies that the change in amplitude of the white noise base excitation from RMS = 1.0% 

g to 1.5% g does not affect the (effective) mode shapes of the building. 

The polar plot representation in Figure 3.13 of the mode shapes identified using 

DSI from the white noise base excitation test data (from RMS = 1.5% g) shows that 

modes 1-L, 1-To, and 2-L are estimated nearly as classically damped, while modes 1-

T+To, 2-L+To, 2-To, 3-L, 3-To, 4-L, and 5-L are identified with some non-classical 

damping characteristics. As mentioned previously, non-classical damping characteristics 
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may partially be the product of estimation uncertainty (error); however, by comparing the 

polar plots in Figure 3.8 and Figure 3.13, it appears that the identified non-classical 

damping in the higher modes is more pronounced in the complete building than in the 

bare building structure, i.e., NCSs increase the level of identified non-classical damping 

in the higher modes. 

 
Figure 3.13: Polar plots of complex mode shapes of the complete building identified 
using DSI from white noise base excitation test data (RMS = 1.5%g). 

Figure 3.14 portrays the MAC values between the mode shapes identified using 

different methods from white noise base excitation test data (RMS = 1.5%g). Similarly to 

the case of the bare building structure (Figure 3.9), the corresponding modes (diagonal 

entries) have high MAC values, indicating good agreement between corresponding mode 

shapes identified using different methods. It is observed that identified lower modes with 

main component in the direction of excitation, i.e., modes 1 (1-L), 4 (2-L), and 7 (3-L), 

show a very good agreement between the different methods (MAC close to one); 

however, some modes with transverse and torsional components, e.g. modes 2 (1-T+To) 

and 3 (1-To), show lower correlation between different methods. This suggests that the 

uncertainty in the identified mode shapes is higher for those modes with lower 

contribution to the total response of the building.  
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Figure 3.14: MAC values between the mode shapes of the complete building identified 
using five different methods from RMS = 1.5%g white noise base excitation test data. 

3.9. Conclusions 

A full scale five-story reinforced concrete building was built and tested, under 

base-isolated and fixed-based conditions, on the NEES-UCSD shake table in the period 

May 2011 – May 2012. Before conducting the seismic tests, a temporary accelerometer 

array was deployed on the fixed-base structure to study the evolution of its modal 

parameters during the construction process and the effects of the major non-structural 

components and systems (NCSs) on the dynamic properties of the building. A sequence 

of dynamic tests, including daily ambient vibration, weekly shock-induced free vibration, 

and some low-amplitude white noise base excitation tests, were performed on the 

structure at different stages of construction. Different state-of-the-art system 

identification methods, including three output-only (SSI-DATA, NExT-ERA and EFDD) 

and two input-output (OKID-ERA and DSI) methods, were used to estimate the modal 

properties of the structure (natural frequencies, damping ratios, and mode shapes) from 

the structural vibration data recorded through the accelerometer array. The natural 
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frequencies and mode shapes identified by different methods are found in very good and 

good agreement, respectively, whereas the identified damping ratios show much larger 

method-to-method variability than the natural frequencies and mode shapes. The effects 

of different construction activities on the modal properties of the building specimen under 

construction are analyzed. It is found that placement of concrete to build the main 

structural elements (slabs, columns, and walls) reduces the natural frequencies because of 

the additional mass (without stiffness) incorporated to the structure. Also, the effect of 

concrete hardening and corresponding stiffness gain during the curing process is detected 

through gradual increase in the natural frequencies. Some NCSs have a significant effect 

on the identified natural frequencies and damping ratios of the building. The precast 

cladding induces abrupt decreases in the natural frequencies due to their significant added 

mass (without significant added stiffness) to the building. The interior partition walls 

increase significantly the initial lateral stiffness of the building (e.g., the interior partition 

walls at the bottom three floors by about 20%) and consequently decrease its natural 

frequencies. Furthermore, they slightly increase the identified damping ratios of the 

building. 

The effect of cracking in the concrete and corresponding loss of stiffness during 

the white noise base excitation tests performed on both the bare building structure and the 

complete building was clearly observed from the natural frequencies identified using the 

white noise base excitation test data. The installation of the NCSs decreased the natural 

frequency (identified from ambient vibration data) of some modes (by up to 9%) and 

increased that of others (by up to 18%), while the identified damping ratios increased by 

15 to 191% for all the modes from the bare building structure to the complete building, 
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due to the additional sources of energy dissipation provided by the NCSs themselves and 

their interaction with the structural skeleton. Finally, it is observed that the low amplitude 

of structural vibration induced by ambient excitations is not sufficient to exercise (re-

open) the majority of the cracks developed during the white noise base excitation tests 

performed (with RMS = 1.0%g and 1.5%g) and therefore to identify the corresponding 

loss of stiffness of the structure. 

Modal properties identified for both the bare structure and complete building 

clearly evidence the effect of the amplitude of the excitation on the natural frequencies 

and damping ratios. In the case of the bare building structure, from ambient vibration 

(with a RMS acceleration of 0.03%g on the roof) to WN base excitation with RMS = 

1.0%g (with a RMS acceleration of 1.85%g on the roof), the natural frequency of mode 

1-L decreases by approximately 3% and the damping ratios of modes 1-L and 2-L 

increase by approximately 250%. From WN base excitation with RMS = 1.0%g to WN 

base excitation with RMS = 1.5%g (with a RMS acceleration of 1.95%g on the roof), the 

natural frequency of mode 1-L decreases by approximately 3.5% and the damping ratios 

increase by approximately 15% for most of the modes. In the case of the complete 

building, similar results are obtained. From ambient vibration (with a RMS acceleration 

0.03%g on the roof) to WN base excitation with RMS = 1.0%g (with a RMS acceleration 

of 1.62%g on the roof), the natural frequency of mode 1-L decreases by approximately 

15% and the damping ratios of the first four modes increase between 140 and 350%. 

From WN base excitation with RMS = 1.0%g to WN base excitation with RMS = 1.5%g 

(with a RMS acceleration of 1.75%g on the roof), the natural frequency of model 1-L 
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decreases by approximately 8% and the damping ratios slightly increase (by a few 

percent) for most of the modes. 

The relatively dense instrumentation of the building specimen combined with the 

daily recorded vibration data and the detailed tracking of the construction process and 

installation of the NCSs enabled a comprehensive study of the individual and combined 

effects of different construction activities and NCSs on the modal properties of the 

building specimen. 
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CHAPTER 4 

SYSTEM IDENTIFICATION OF A FULL-SCALE FIVE-

STORY REINFORCED CONCRETE BUILDING TESTED 

ON THE NEES-UCSD SHAKE TABLE 

4.1. Introduction 

The advances in structural health monitoring (SHM) over the last forty years have 

attracted significant attention from the structural engineering community as the need for 

implementing accurate and robust damage identification (DID) strategies for civil 

structures only increases. Undoubtedly, DID based on changes in the identified modal 

properties of an equivalent linear elastic viscously damped model of the structure has 

been one of the most popular approaches. This approach assumes that low-amplitude 

dynamic input-output or output-only data are available before and after the structure has 

suffered damage. Such damage can be detected and localized by analyzing changes in 

these modal properties or quantities derived therefrom (e.g., curvature mode shapes), 

which depend on the physical characteristics of the structure (i.e., mass, stiffness, and 

energy dissipation mechanisms). Experimental and operational modal analyses are the 

89 
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main techniques to identify the modal parameters (natural frequencies, damping ratios, 

and mode shapes) from recorded structural vibration data. A comprehensive and detailed 

literature review on vibration-based DID can be found in Doebling et al. (1996) and Fan 

and Qiao (2011). 

Most vibration-based DID studies have been conducted using idealized theoretical 

models and numerically simulated data, or using experimental data from small-scale tests 

of single structural components, subassemblies, and systems (e.g., Johnson et al. 2004, 

Bernal et al. 2002, Giraldo et al. 2009). Only a few studies have used experimental data 

obtained from real structures or large-scale shake table tests. Most full-scale damage-

controlled tests have been conducted on bridge structures (Farrar et al. 2000, Peeters and 

De Roeck 2001, Huth et al. 2005, Lauzon and DeWolf 2006, Siringoringo et al. 2012, 

Dilena and Morassi 2012) by progressively inducing artificial damage (e.g., partial saw 

cuts in steel beams and/or partial cuts of post-tensioning tendons). 

Building structures are even more complex than bridges. Several factors hinder 

robust vibration-based DID studies for building structures: (1) the impossibility to 

perform progressive damage tests on existing non-decommissioned structures; (2) the 

high risk and complexity to conduct such tests on decommissioned structures; (3) and the 

scarcity of recorded dynamic response of earthquake-damaged buildings. This lack of 

data has been somewhat addressed by shake table tests that have provided important, 

high-quality and unique data to evaluate the dynamic properties of buildings at different 

damage states. 

Moaveni et al. (2011) estimated the modal properties of a 7-story reinforced 

concrete (RC) shear-wall building slice subjected to a sequence of earthquake base 
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motions of increasing intensity. Using output-only and input-output system identification 

(SID) methods with ambient vibration (AV) and white noise (WN) base excitation test 

data, they studied the variation of the identified natural frequencies and damping ratios as 

a function of structural damage. They concluded that the natural frequencies decreased as 

the damage progressed in the specimen. Similarly, but using only one input-output 

method, Moaveni et al. (2012) analyzed the effect of structural damage on the modal 

properties of a 2/3-scale 3-story infilled RC frame and obtained similar conclusions. Ji et 

al. (2011) used the frequency response function (FRF) curve-fitting and the 

autoregressive with exogenous input (ARX) methods to identify the modal properties of a 

full-scale specimen representing a high-rise steel building tested on the E-Defense shake 

table. They observed that the identified natural frequencies decreased as damage 

progressed, while the mode shapes remained essentially unchanged. In contrast, Hien and 

Mita (2011) used a subspace state-space system identification method (N4SID) to study 

the effect of damage on the modal properties of a full-scale 4-story steel building, also 

tested on the E-Defense shake table, but found variation in both natural frequencies and 

mode shapes as the damage progressed. Belleri et al. (2013) analyzed the effect of 

damage on the modal parameters of a 1/2-scale 3-story precast concrete building using 

the deterministic-stochastic subspace identification method, concluding that the natural 

frequencies decreased and the damping ratios increased as structural damage progressed. 

None of the above-mentioned shake table tests involved RC frame specimens. It 

is reasonable to assume that distinct structural systems experience different type 

(including spatial distribution) of damage, which may affect the modal parameters 

dissimilarly.  Furthermore, previous studies identified only a relatively small number of 
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modes (five or less); the effect of damage on higher modes of vibration was not analyzed.  

Although previous results on building structures were based on large or full-scale shake 

table tests, none of them strictly represented real-life conditions since typical non-

structural components and systems (NCSs) were not installed on the specimens. 

Consequently, the effects of NCSs and their dynamic interaction with the structure have 

not been analyzed through full-scale shake table tests, and particularly for service-level 

earthquakes. 

This chapter focuses on a full-scale 5-story RC frame building fully outfitted with 

a large variety of NCSs built and tested on the unidirectional NEES-UCSD shake table. 

Structural vibration data recorded on the specimen from AVs and low-amplitude WN 

base excitation tests were used to identify the modal properties of the building at different 

levels of structural and nonstructural damage, which were progressively induced by 

earthquake base motions of increasing intensity. Three output-only SID methods, namely, 

the Data-Driven Stochastic Subspace Identification (SSI-DATA) method, the Multiple-

Reference Natural Excitation Technique combined with the Eigensystem Realization 

Algorithm (NExT-ERA), and the Enhanced Frequency Domain Decomposition (EFDD) 

method, were used in conjunction with the AV data. In addition to the three above-

mentioned output-only methods, two input-output SID methods, namely, Deterministic-

Stochastic Subspace Identification (DSI) and Observer/Kalman Filter Identification 

combined with the Eigensystem Realization Algorithm (OKID-ERA), were used in 

conjunction with the low-amplitude WN base excitation test data. 

Detailed visual inspections of the damage between seismic tests permitted 

correlating the identified modal parameters and their changes with the actual damage on 
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the building structure and NCSs. The identified natural frequencies were used to 

determine the progressive loss of apparent stiffness of the building as a function of 

damage. The state-space models identified from WN base excitation test data were used 

to investigate the relative modal contributions to the measured building response at 

different damage states. 

4.2. Description of the test specimen 

The test building was a full-scale 5-story cast-in-place RC structure fully outfitted 

with a broad array of NCSs. The building had two bays in the longitudinal direction 

(direction of shaking) and one bay in the transverse direction, with plan dimensions of 

11.0 6.6 m× , respectively. The building had a floor-to-floor height of 4.27 m, a total 

height (measured from the top of the foundation to the top of the roof slab) of 21.34 m, 

and an estimated total weight of 3010 kN for the bare structure and 4420 kN for the 

structure with all the NCSs; these figures do not include the foundation, which weighed 

1870 kN. The seismic resisting system was provided by two identical one-bay special RC 

moment resisting frames oriented in the East-West direction. One frame was placed on 

the North face of the building and the other on the South face. The beams, 0.30 0.71 m×  

in cross-section, had different design details at different floors. A 0.20 m thick cast-in-

place slab provided the floor support for each level. Six 0.66 0.46 m×  columns were 

reinforced with six #6 and four #9 longitudinal bars, and a prefabricated transverse 

reinforcement grid. There were two main openings in each slab to accommodate a steel 

stair assembly and a functioning elevator, each of which extended the full height of the 
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building. Two 0.15 m-thick transverse RC shear walls provided the support for the 

elevator guiderails. See Chen et al. (2013) for detailed information about the structural 

system, nonstructural components, and their design considerations and Hutchinson et al. 

(2014) and Pantoli et al. (2015a) for the dataset of the project. Figure 4.1 shows the test 

specimen and schematic elevation, and plan views. 

 
Figure 4.1: Test specimen: (a) completed building; (b) schematic elevation view; and (c) 
schematic plan view (dimensions are in meters). 

4.3. Instrumentation plan and dynamic tests 

4.3.1. Instrumentation plan 

The building was densely instrumented with an array of accelerometers, load 

cells, strain gauges, LVDTs, string potentiometers, GPS antennas, and digital video 

cameras. The accelerometer array deployed prior to the seismic shake table tests 

consisted of four triaxial accelerometers per floor, one at each corner, as represented by 

red circles in Figure 4.1(c). Also, two triaxial accelerometers were placed on the North-

East and South-West corners of the shake table platen. The accelerometers were force-
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balance Episensor, with a full-scale of ±4g, a frequency bandwidth DC–200 Hz, and a 

wide dynamic range of 155dB. The data acquisition system consisted of Quanterra Q330 

digitizers from Kinemetrics, Inc., which have a digital resolution of 24 bits, separate 

sigma-delta A/Ds on each channel, and digital linear-phase anti-alias filters at 80Hz. In 

this study, the acceleration response of the building, which was measured by 24 

accelerometer channels (two for each translational direction of each floor including the 

foundation level) sampled at 200 Hz was used to identify the dynamic properties of the 

test specimen. Prior to performing SID, the time series were detrended and filtered using 

a band-pass IIR Butterworth filter of order 4 with cut-off frequencies at 0.15 and 25 Hz, 

which defined a frequency range containing all the vibration modes contributing 

noticeably to the building response. 

4.3.2. Dynamic tests 

The seismic shake table tests on the fixed-base (FB) building were conducted in 

May 2012. Ambient and forced vibration data, including pulse-like and low-amplitude 

WN base excitations, were recorded on the FB building between seismic tests. Six 

earthquake input motions (Table 4.1) were selected based on global and local 

performance criteria, and were applied to progressively damage the structure and NCSs. 

The building was designed for a location in Southern California, where site-specific 

ground motions were available. The available site-specific maximum considered 

earthquake (MCE) ground motion spectrum was developed for a Site Class D (stiff) soil 

conditions and had a short-period spectral acceleration SMS = 2.10g and a 1-sec spectral 

acceleration SM1 = 1.43g. Performance-based design objectives of 2.5% peak interstory 
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drift ratio (PIDR) and maximum peak floor acceleration (PFA) between 0.7−0.8g were 

selected during the conceptual design phase. Figure 4.2 shows the acceleration time 

histories of the earthquake input motions (achieved on the shake table) together with their 

5% damped displacement and pseudo-acceleration elastic response spectra. Ten minutes 

of AVs were recorded before and after each seismic test, and low-amplitude WN base 

excitation tests were conducted at key stages during the test protocol. Table 4.1 

summarizes the seismic test protocol and the vibration data of the FB building used in 

this study. 

 
Figure 4.2: Achieved seismic input motions (a) acceleration time histories; (b) elastic 
displacement response spectra (ξ = 5%); and (c) pseudo-acceleration response spectra 
(ξ = 5%). 

To show examples of the recorded structural vibration data, Figure 4.3(a) shows 

the time histories and Fourier amplitude spectra (FAS) of the acceleration responses 

recorded on the second floor and on the roof of the building for AV test AMB1. Figure 

4.3(b) shows the time histories and FAS of the acceleration responses recorded on the 

first floor and on the roof for WN test WN1A. 
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Table 4.1: Dynamic tests performed. 

Date Description Name Type Target a Damage 
state 

May 7, 2012 

Ambient vibration 1 AMB1 - - DS0 
6 min WN (1.5%g RMS) WN1A - - DS0 
6 min WN (3.0%g RMS) WN1B - - DS0 
6 min WN (3.5%g RMS) WN1C - - DS0 

Canoga Park (1994 Northridge EQ.) FB:1-CNP100 SM SLE - 
Ambient vibration 2 AMB2 - - DS1 

May 9, 2012 
LA City Terrace (1994 Northridge EQ.) FB:2-LAC100 SM SLE - 

Ambient vibration 3 AMB3 - - DS2 
ICA 50% (2007 Pisco EQ.) FB:3-ICA50 AM - - 

May 11, 2012 

Ambient vibration 4 AMB4 - - DS3 
ICA 100% (2007 Pisco EQ.) FB:4-ICA100 AM - - 

6 min WN (1.5%g RMS) WN2A - - DS4 
Ambient vibration 5 AMB5 - - DS4 

May 15, 2012 

4 min WN (3.0%g RMS) WN2B - - DS4 
TAPS Pump Station 67% (2002 Denali EQ.) FB:5-DEN67 SM DE - 

6 min WN (1.5%g RMS) WN3A - - DS5 
Ambient vibration 6 AMB6 - - DS5 

4 min WN (3.5%g RMS) WN3B - - DS5 
TAPS Pump Station 100% (2002 Denali EQ.) FB:6-DEN100 SM MCE - 

Ambient vibration 7 AMB7 - - DS6 
a: These test motions were spectrally matched to the reported performance targets (SLE = service-level 
earthquake, DE = design earthquake, and MCE = maximum considered earthquake), assuming properties of 
the test structure at the time of conceptual design. RMS = root-mean-square. SM = spectrum-matched 
motion, AM = actual motion. 

 

 
Figure 4.3: Time histories and Fourier amplitude spectra of the acceleration data 
recorded at different floors: (a) ambient vibration test AMB1; and (b) white-noise base 
excitation test WN1A. 

Because the WN base excitations were applied only in the East-West (EW) 

direction, which corresponds to the longitudinal direction of the building, the level of 

structural responses in the North-South (NS) direction was low compared to the EW 

direction [Figure 4.4(a)]. As a result, contributions of the transverse modes to the total 
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response of the building were lower than those of the longitudinal and torsional modes; 

therefore, identification of transverse modes proved difficult when the WN base 

excitation test data was used. Conversely, the amplitudes of both translational 

components (NS and EW) of the response under AVs were comparable [Figure 4.4(b)]; 

therefore, the AV data was more appropriate for identifying the transverse modes of the 

building. Figure 4.4(a) shows the acceleration orbits of the roof during test AMB1, while 

Figure 4.4(b) shows the acceleration orbit of the roof during test WN1A. 

 
Figure 4.4: Acceleration orbits of the roof measured during (a) AMB1 (units: mm/sec2) 
and (b) WN1A (units: m/sec2). 

4.4. Damage states 

As mentioned earlier, structural and non-structural damage was progressively 

induced by six earthquake input motions of increasing intensity. Different damage states 

(DSs) were defined before and after each seismic test. DS0 corresponds to the baseline 

state of the building before the first seismic test in the FB configuration (FB-1:CNP100), 

while DS1, DS2, DS3, DS4, DS5, and DS6 correspond to the damage states after the 

seismic tests FB:1-CNP100, FB:2-LAC100, FB:3-ICA50, FB:4-ICA100, FB:5-DEN67, 
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and FB:6-DEN100, respectively (Table 4.1). Note that DS0 does not correspond to the 

undamaged state of the structure as this building specimen was previously tested in a 

base-isolated configuration; however, the observed structural damage was negligible. 

Further information about the structural and nonstructural damage can be found in Chen 

et al. (2015) and Pantoli et al. (2015b), respectively. Table 4.2 summarizes the damage 

observed in the structure and drywalls (interior partitions and façade-balloon framing) at 

the different DSs. Previous studies have shown that drywalls contribute substantially to 

the lateral stiffness of the building and, therefore, are expected to affect significantly the 

modal properties of the test specimen (Astroza et al. 2015). 

Table 4.2: Summary of visual damage inspections performed at different damage states. 
Damage 

state Description 

DS0 No damage 

DS1 Structure: minor cracks on the slabs of floors 2 and 3 (< 0.2 mm). 
Interior partition walls: moderate damage (cracks at joints, crushing at corners)  
Balloon framing: moderate damage to interior gypsum (cracks at joints, crushing at corners), minor damage to 
exterior stucco (cracks around door openings), and no visible damage to clips. DS2 

DS3 

Structure: minor flexural cracks on the North beam on level 3 (< 0.15 mm), minor spalling at the bottom of NW 
column on level 2, minor cracking on levels 2, 3, and 4 slabs (< 0.25 mm), and moderate cracking on levels 2 and 3 
slabs (< 0.25 mm). 
Interior partition walls: moderate damage (cracks at joints, crushing at corners) 
Balloon framing: moderate-severe damage to interior gypsumboard (severe crushing at corners, screw pull-out 
failure, joints with severe cracks), moderate damage to exterior stucco (diagonal and horizontal cracks), and minor 
clip failure (≤ 5%). 

DS4 

Structure: minor flexural cracks on the north beam on levels 2 and 3 (< 0.25 mm), minor flexural cracking on the 
columns on levels 1 and 2 (< 0.1 mm), and moderate cracking on levels 2, 3, and 4 slabs (< 0.30mm). 
Interior partition walls: severe damage (severe cracking to gypsumboard joints, gapping with adjacent elements, 
screw pull-out failure, severe crushing at corners). 
Balloon framing: moderate-severe damage to interior gypsumboard (severe crushing at corners, screw pull-out 
failure, joints with severe cracks), moderate-severe damage to exterior stucco (considerable diagonal and horizontal 
cracks) and minor clip damage (≈ 5%). 

DS5 

Structure: moderate flexural cracks on the North beam on levels 2 and 3 (< 0.5mm), moderate flexural cracks on the 
columns on levels 1 and 2 (<0.1mm) and moderate cracking on levels 2, 3 and 4 slabs (< 0.30mm). 
Interior partition walls: severe damage (gapping gypsumboard joints and screw pull-out failure, considerable 
amount of gypsum panel loosening, partial separation, and severe crushing at corners) 
Balloon framing: severe damage to interior gypsumboard (severe gapping at joints, panel partial separation), severe 
damage to exterior stucco (severe cracks and corner breaking), and severe failure to clips (40%) 

DS6 

Structure: severe damage to beams on levels 2 and 3 (buckling and fracture of the longitudinal reinforcing steel 
bars), severe spalling and cracking at the base of the columns on levels 1 and 2, and severe cracking on levels 2, 3, 
and 4 slabs. 
Interior partition walls: severe damage (complete gypsum separation, gypsum fracture, considerable amount of 
severe gapping of gypsumboard joints) 
Balloon framing: severe damage to interior gypsumboard (panel complete separation), severe damage to exterior 
stucco (top and bottom corners torn apart), and severe damage to clips (70% failed) 
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4.5. System identification methods 

To estimate the modal properties of the building specimen at different damage 

states, three state-of-the-art output-only SID methods were used in conjunction with the 

AV data. These methods are: Data-Driven Stochastic Subspace Identification (SSI-

DATA), Multiple-Reference Natural Excitation Technique combined with Eigensystem 

Realization Algorithm (NExT-ERA), and Enhanced Frequency Domain Decomposition 

(EFDD). It is noted that a single ten-minute long dataset of ambient vibration was used at 

each damage state to estimate the modal properties.  In addition to the three above-

mentioned output-only methods, two input-output methods were used in conjunction with 

the low-amplitude WN base excitation test data: Deterministic-Stochastic Subspace 

Identification (DSI) and Observer/Kalman Filter Identification combined with 

Eigensystem Realization Algorithm (OKID-ERA). Each SID method used herein is 

briefly described below. The complete dataset recorded for each WN base excitation test 

(see Table 4.1) was used for the system identification. Note that all the SID methods used 

in this study assumed a linear time-invariant (LTI) model of the structure, with all 

sources of energy dissipation represented by linear viscous damping. Consequently, the 

identified natural frequencies and damping ratios correspond to the modal parameters of 

an equivalent linear visco-elastic model. 

To reduce the computational demand of the identification process, the 

acceleration time histories were decimated to 100 Hz. In the case of the SID methods 

based on state-space representation (SSI-DATA, NExT-ERA, DSI, and OKID-ERA), the 

stabilization diagram —which plots the identified modal parameters versus the model 
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order— was used to distinguish between physical and spurious (mathematical) modes. 

The following stability criteria were used: 

 ( )1% ; 5% ; 100 2% ; 6i j j i j j , si j
f f f ξ ξ ξ 1-MAC n− ≤ − ≤ ≤ ≥φ φ  (4.1) 

where fi, fj, ξi, and ξj are the identified natural frequencies and damping ratios for models 

of consecutive orders, 
i j,MACφ φ is the modal assurance criterion (Allemang and Brown 

1982) of a pair of corresponding modes shapes identified for models of consecutive 

orders, and ns denotes the number of consecutive times (as the model order is increased 

progressively by increments of two) that an identified mode satisfies the triple stability 

(frequency, damping, and mode shape) criterion defined in Equation (4.1). 

4.5.1. Data-Driven Stochastic Subspace Identification (SSI-DATA) 

The data-driven stochastic subspace identification (SSI-DATA) method (Van 

Overschee and De Moor 1996) is a time-domain SID method that extracts a linear state-

space model of the system using output-only measured vibration response data. Contrary 

to the two-stage time-domain methods (such as SSI-COV and NExT-ERA), it does not 

require computing the covariance matrices of the data and is numerically more robust 

because it does not require squaring up the output data (Peeters and De Roeck 2001). 

Moreover, robust numerical techniques such as QR factorization, singular value 

decomposition, and least squares are used in this method. For each test dataset, an output 

Hankel matrix was constructed considering 15 block rows with 20 (number of output 

channels) rows per block. 
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4.5.2. Multiple-Reference Natural Excitation Technique combined with 

Eigensystem Realization Algorithm (NExT-ERA) 

The natural excitation technique (NExT) considers that the theoretical cross-

correlation function of the measured vibration response (at two different outputs) to a 

broadband excitation has the same analytical form as the free vibration response of the 

structure (James et al. 1993). Once the cross-correlation vector for a given reference 

channel is estimated, the ERA method (Juang and Pappa 1985) can be used to estimate 

the modal parameters. To avoid selecting a reference channel that may coincide with a 

modal node, a vector of reference channels can be used (He et al. 2009). The cross-

correlation functions were computed through the inverse Fourier transform of the 

corresponding cross-power spectral density (CPSD) functions, which were estimated 

using the Welch’s method with a Hanning window of length 1/8 of the total length of the 

signal and 50% overlapping. The estimated cross-correlation functions were then used to 

construct the Hankel matrix with 150 block rows (20 rows per block) and 150 columns. 

4.5.3. Enhanced Frequency Domain Decomposition (EFDD) 

Introduced by Brincker et al. (Brincker et al. 2001a), the frequency-domain 

decomposition method corresponds to an extension of the peak-picking method. The 

enhanced frequency-domain decomposition method (Brincker et al. 2001b) estimates the 

modal properties of a system from the singular value decomposition (SVD) of the cross-

power spectral density matrix of the outputs because the singular values can be 

interpreted as the auto-spectral densities of the modal coordinates and the singular vectors 

as the modes shapes (Brincker et al. 2001a). Returning the auto-spectral density back to 
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the time domain by inverse Fourier transform, the natural frequency and damping ratio 

can be determined from the corresponding modal single-degree-of-freedom auto-

correlation function (ACF). Implementation of EFDD required estimating the CPSD 

functions using the Welch’s method with a Hanning window of length 1/4 of the total 

length of the signal and 50% overlapping. 

4.5.4. Deterministic-Stochastic Subspace Identification (DSI) 

The combined deterministic-stochastic subspace identification method (DSI), a 

time-domain technique, was developed by Van Overschee and de Moor (1996). This 

method extracts a linear state-space model of the system from a Hankel block matrix 

constructed from the input-output measured vibration data. Then, assuming that: (i) the 

deterministic input is uncorrelated with both process and measurement noises, (ii) the 

deterministic input is persistently exciting, and (iii) the process and the measurement 

noises are not identically zero, DSI estimates the state-space matrices using the same 

numerical techniques as in SSI-DATA. For each test dataset, an input-output Hankel 

matrix was constructed considering 15 block rows with 21 (1 input and 20 output 

channels) rows per block. 

4.5.5. Observer/Kalman Filter Identification Combined with Eigensystem 

Realization Algorithm (OKID-ERA) 

This time-domain method was developed by Juang et al. (1991). The OKID 

method includes a feedback loop (observer) to make the system as stable as desired and 

computes both the system and observer Markov parameters from the input-output 
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recorded data by introducing prescribed eigenvalues for the observer. Then, the system 

Markov parameters are fed into the ERA to estimate the matrices of the state-space model 

of the structure. For each test dataset, an output matrix of dimensions 20 2000m l× = × , 

where m = number of output channels, and an input-output matrix of dimensions 

( ) ( )1 20 1 200 2000 4201 2000r m r p l+ + × = + + × = ×       , where r = number of input 

channels, p = integer such that fork   k p≈ ≥CA B 0  ( , , and  A B C  are the state, input, and 

output matrices of the system with the observer, respectively), and l = number of data 

samples, are constructed from the recorded data. 

4.6. System identification results 

Using the five SID methods presented above together with the AV data and data 

recorded during low-amplitude WN base excitation tests (with three amplitude levels of 

base excitation, namely 1.5%, 3.0%, and 3.5%g root-mean-square or RMS), the modal 

properties of the building specimen were estimated at the different damage states; these 

results are presented and discussed below. 

4.6.1. System identification based on ambient vibrations 

Table 4.3 shows the natural frequencies and equivalent damping ratios (termed 

damping ratios from this point on) estimated using the three output-only methods from 

the AV data recorded at the different damage states. Eleven modes were identified using 

AV data. They correspond to the first five longitudinal (1-L, 2-L, 3-L, 4-L, and 5-L), first 

three torsional (1-To, 2-To, and 3-To), and first three coupled translational-torsional (1-
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T+To, 2-T+To, and 2-L+To) modes of the building. Good agreement between natural 

frequencies identified using SSI-DATA, NExT-ERA, and EFDD was observed at each 

damage state. The identified damping ratios, which are mostly in the range 0−3%, show 

higher variability between different SID methods than the identified natural frequencies. 

Damping ratios of the lower modes identified using SSI-DATA, NExT-ERA, and EFDD 

are in good agreement and their variability is lower than that of the higher modes. The 

participation of the higher modes in the measured building response is lower than that of 

the lower modes; consequently, the signal-to-noise-ratio (SNR) is lower for the higher 

modes. These results suggest that damping ratio estimates are more sensitive to noise 

level than natural frequency estimates (e.g., Moaveni et al. 2014). Moreover, the damping 

ratios of higher modes (which do not contribute much to the response of the building) 

identified by EFDD are consistently lower than those identified using NExT-ERA and 

SSI-DATA. This observation is in agreement with previous studies (e.g., He et al. 2009, 

Antonacci et al. 2009, Moaveni et al. 2011, Astroza et al. 2015), and is attributable to the 

fact that a large threshold (e.g., 0.98) must be considered for the MAC in the correlation 

analysis performed when extracting the auto-spectrum of each modal SDOF. It is noted 

that the modal ACFs required in the EFDD method are obtained by inverse Fourier 

transformation of the corresponding auto-spectra. 
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Table 4.3: Natural frequencies and damping ratios identified using ambient vibration test 
data. 

  Natural frequency (Hz)  Equivalent damping ratio (%) 
              Mode SSI-

DATA 
NExT-
ERA EFDD Mean c.o.v (%)  SSI-

DATA 
NExT-
ERA EFDD Mean c.o.v (%) 

A
M

B
 1

 / 
D

S0
 

1-T+To 1.87 1.87 1.88 1.87 0.31  0.95 0.89 0.81 0.88 8.25 
1-L 1.93 1.93 1.94 1.93 0.33  1.02 1.01 1.11 1.05 5.09 
1-To 2.66 2.66 2.66 2.66 0.04  1.32 1.30 0.71 1.11 31.35 

2-T+To 6.86 6.87 6.86 6.86 0.08  1.90 1.41 0.87 1.39 37.10 
2-L 7.24 7.22 7.14 7.20 0.73  1.91 1.77 1.25 1.64 21.05 

2-L+To 7.84 7.75 7.76 7.78 0.63  2.61 1.63 0.65 1.63 60.20 
2-To 10.10 10.07 10.10 10.09 0.16  2.19 2.38 2.64 2.40 9.38 
3-L 11.79 11.40 11.83 11.67 2.04  4.68 2.14 0.02 2.28 102.20 
3-To 13.63 13.63 13.87 13.71 1.01  1.26 3.67 0.46 1.80 92.95 
4-L 19.92 19.78 19.69 19.80 0.59  1.34 0.69 0.19 0.74 77.68 
5-L 24.09 24.15 23.99 24.08 0.33  1.69 0.92 0.03 0.88 94.22 

             

A
M

B
 2

 / 
D

S1
 

1-T+To 1.84 1.84 1.84 1.84 0.10  1.17 1.17 0.77 1.04 22.27 
1-L 1.78 1.78 1.79 1.78 0.27  0.87 0.83 1.36 1.02 28.82 
1-To 2.56 2.57 2.59 2.57 0.55  1.50 1.91 1.88 1.76 12.94 

2-T+To 6.66 6.67 6.63 6.65 0.28  1.84 1.74 0.92 1.50 33.48 
2-L 6.91 6.92 6.95 6.93 0.27  1.35 1.30 0.75 1.13 29.64 

2-L+To 7.37 7.34 7.43 7.38 0.61  1.66 2.06 2.67 2.13 23.85 
2-To 10.01 10.08 9.99 10.03 0.49  1.63 1.52 1.88 1.68 11.13 
3-L 11.19 11.28 11.02 11.16 1.20  3.80 1.91 1.19 2.30 58.55 
3-To 13.52 13.65 13.55 13.57 0.50  1.15 0.91 0.38 0.81 48.34 
4-L 19.50 - 19.55 19.52 0.18  3.53 - 0.27 1.90 121.40 
5-L 24.00 - 23.86 23.93 0.42  2.42 - 1.68 2.05 25.59 

             

A
M

B
 3

 / 
D

S2
 

1-T+To 1.81 1.81 1.80 1.81 0.30  1.72 1.39 1.35 1.49 13.59 
1-L 1.69 1.70 1.69 1.69 0.33  3.05 3.13 2.02 2.73 22.66 
1-To 2.49 2.49 2.48 2.49 0.14  1.73 1.65 1.98 1.79 9.49 

2-T+To 6.48 6.46 6.45 6.46 0.23  1.63 1.85 2.53 2.00 23.49 
2-L 6.72 6.68 6.81 6.74 0.95  2.80 2.97 1.29 2.35 39.24 

2-L+To 6.92 6.89 6.81 6.87 0.86  0.76 1.34 1.59 1.23 34.71 
2-To 9.97 10.03 10.02 10.01 0.33  2.17 1.83 2.33 2.11 12.19 
3-L 11.03 11.14 11.11 11.09 0.51  2.93 2.97 0.67 2.19 60.26 
3-To 13.39 13.40 13.43 13.41 0.15  1.16 1.11 0.16 0.81 69.89 
4-L 19.41 19.44 19.42 19.42 0.08  0.90 0.64 0.24 0.59 56.23 
5-L 23.31 - 23.26 23.29 0.15  

 

2.42 - 3.05 2.73 16.22 
             

A
M

B
 4

 / 
D

S3
 

1-T+To 1.80 1.80 1.81 1.80 0.41  1.04 0.95 0.88 0.96 8.26 
1-L 1.61 1.61 1.62 1.61 0.38  1.16 1.16 1.24 1.19 3.81 
1-To 2.45 2.45 2.44 2.45 0.13  1.11 1.26 1.07 1.15 8.68 

2-T+To 6.67 6.66 6.67 6.67 0.11  1.76 1.60 0.67 1.34 43.70 
2-L 6.57 6.53 6.54 6.55 0.33  1.83 1.46 0.67 1.32 44.69 

2-L+To 7.21 7.28 6.84 7.11 1.65  2.77 4.06 2.23 3.02 19.57 
2-To 9.74 9.80 9.61 9.72 1.02  2.58 1.40 0.09 1.36 92.02 
3-L 10.74 10.74 10.72 10.73 0.12  2.22 1.60 0.87 1.56 43.13 
3-To 13.52 13.59 13.46 13.52 0.48  2.09 3.25 0.47 1.94 72.28 
4-L - 17.28 17.44 17.36 0.67  - 1.11 0.58 0.84 44.66 
5-L 22.34 21.47 21.66 21.82 2.09  1.34 1.01 0.14 0.83 74.87 
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Table 4.3: Natural frequencies and damping ratios identified using ambient vibration test 
data, continued. 

  Natural frequency (Hz)  Equivalent damping ratio (%) 
             

A
M

B
 5

 / 
D

S4
 

1-T+To 1.75 1.75 1.75 1.75 0.06  0.98 0.97 0.81 0.92 10.18 
1-L 1.44 1.44 1.43 1.44 0.23  1.84 1.71 1.71 1.75 4.36 
1-To 2.29 2.29 2.27 2.28 0.49  0.94 1.10 0.79 0.94 16.38 

2-T+To 6.41 6.42 6.37 6.40 0.45  1.39 1.41 1.74 1.51 12.94 
2-L 5.63 5.30 5.89 5.61 5.27  1.59 1.03 0.48 1.03 53.64 

2-L+To 5.96 5.98 5.95 5.96 0.25  1.26 1.44 0.77 1.16 29.71 
2-To 9.12 9.11 9.09 9.11 0.14  1.81 2.13 0.64 1.53 51.56 
3-L 9.82 9.44 9.65 9.64 1.98  2.64 3.13 0.31 2.03 74.23 
3-To 11.53 11.68 11.55 11.59 0.71  2.59 2.74 0.64 1.99 58.82 
4-L 15.82 15.59 15.67 15.69 0.74  1.97 1.90 0.49 1.45 57.20 
5-L 20.60 20.20 20.23 20.34 1.09  2.36 1.21 0.07 1.21 94.56 

             

A
M

B
 6

 / 
D

S5
 

1-T+To 1.59 1.58 1.59 1.59 0.43  1.33 1.52 1.87 1.57 17.28 
1-L 1.04 1.04 1.04 1.04 0.13  3.88 3.57 3.24 3.56 8.93 
1-To 2.00 2.00 2.02 2.01 0.58  2.06 1.75 2.06 1.96 9.18 

2-T+To 5.83 5.85 5.80 5.83 0.45  1.67 1.51 1.54 1.57 5.46 
2-L 4.65 4.66 4.65 4.65 0.12  2.61 2.62 2.42 2.55 4.31 

2-L+To - - 5.80 5.80 -  - - 1.71 1.71 - 
2-To 8.83 8.89 8.84 8.85 0.35  0.41 1.02 0.11 0.51 90.35 
3-L 10.22 9.65 10.11 9.99 3.02  1.28 2.83 0.07 1.39 99.05 
3-To 11.57 11.42 11.90 11.63 2.09  2.18 4.31 0.72 2.40 75.25 
4-L 13.69 13.57 13.84 13.70 0.98  1.92 2.82 1.13 1.96 43.14 
5-L 17.61 17.51 17.66 17.59 0.44  5.22 2.93 0.12 2.76 92.53 

             

A
M

B
 7

 / 
D

S6
 

1-T+To 1.49 1.49 1.49 1.49 0.03  0.79 1.03 1.27 1.03 23.39 
1-L 0.86 0.86 0.86 0.86 0.04  3.57 3.97 4.00 3.85 6.24 
1-To 1.84 1.84 1.84 1.84 0.09  1.57 1.34 2.40 1.77 31.54 

2-T+To 5.69 5.70 5.69 5.69 0.11  1.77 1.54 1.60 1.64 7.28 
2-L 4.28 4.28 4.28 4.28 0.02  1.73 1.67 1.72 1.71 1.89 

2-L+To 5.98 5.83 5.69 5.83 2.50  0.16 0.18 1.52 0.62 125.66 
2-To 8.02 8.05 8.00 8.02 0.34  2.88 1.46 0.88 1.74 59.27 
3-L 7.64 7.66 7.73 7.68 0.59  2.09 1.96 0.69 1.58 49.18 
3-To 10.89 10.66 10.74 10.76 1.08  2.37 3.65 1.55 2.52 41.92 
4-L 13.09 13.00 13.23 13.11 0.89  3.35 2.82 0.16 2.11 80.90 
5-L 15.03 15.11 14.98 15.04 0.42  4.24 2.40 0.02 2.22 95.19 

         T: transverse / L: longitudinal / To: torsion 

Figure 4.5, Figure 4.6, and Figure 4.7 show graphically the trends in the identified 

natural frequencies and damping ratios (reported in Table 4.3) as the damage progresses. 

Figure 4.5 clearly indicates that (1) all the identified natural frequencies consistently 

decrease as the damage in the building progresses; and (2) the natural frequencies of the 

modes with predominant component in the longitudinal direction decrease at a faster rate. 

Moreover, the largest reductions in the natural frequencies occur at damage states 4, 5, 
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and 6. This observation is consistent with the visual damage inspection results (Table 4.2) 

and the intensity of the earthquake base motions (Figure 4.2). 

 
Figure 4.5: Natural frequencies identified at different damage states from ambient 
vibration test data. 

Because the increasingly intense earthquake input motions were applied in the 

longitudinal direction of the building, a significant reduction of the lateral stiffness in this 

direction was expected. As a result, the identified natural frequencies of the longitudinal 

modes of the building experienced larger relative reductions than the other modes and the 

mode-crossing phenomenon occurred. At DS0, the mode 1-T+To had the lowest natural 

frequency (1.87 Hz) while the mode 1-L had a frequency of 1.93 Hz. At DS1 (after the 

structure was subjected to FB:1-CNP100), the mode 1-L had the lowest natural frequency 

(1.78 Hz), and the mode 1-T+To decreased its frequency to 1.84 Hz. Similar effects were 

also observed for higher modes. In particular, modes 2-T+To, 2-L, and 2-L+To also 

changed their order. Before DS2, they were sorted as 2-T+To, 2-L and 2-L+To, while at 
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DS3 the order changed to 2-L, 2-T+To, and 2-L+To, and from DS4 onwards to 2-L, 2-

L+To, and 2-T+To. Similarly, modes 2-To and 3-L switched their order from DS5 to 

DS6. 

Damage to the structure and to nonstructural components caused a reduction in 

the equivalent lateral stiffness of the building. Based on the information obtained by 

visual inspection, the damage observed before DS2 was mostly in the NCSs, especially 

the partition walls. Although the seismic base excitations were imposed in the 

longitudinal direction of the building, the torsional and transverse stiffness of the building 

also changed noticeably. This effect was quantified by analyzing the ratio between the 

natural frequencies at different damage states and the corresponding natural frequencies 

at DS0 (Figure 4.6). The longitudinal modes experienced higher relative reduction in 

their natural frequencies as damage progressed; in particular, the first longitudinal mode 

underwent the largest relative reduction. The identified natural frequency of mode 1-L 

decreased 8% and 56% (with respect to DS0) at DS1 and DS6, respectively. On the other 

hand, modes 1-T+To and 2-T+To experienced the least relative change. Their frequencies 

decreased 1.5% and 20% at DS1 and DS6, respectively. Higher longitudinal modes 3-L, 

4-L, and 5-L were practically unaffected at low-intensity motions, but their frequencies 

reduced by almost 40% at DS6. 

Figure 4.7 indicates that the damping ratios identified by the three different 

methods do not show any clear trend as damage progresses. However, it is well-known 

that the damping ratio estimates are sensitive to the amplitude of the structural response 

(e.g., Moaveni et al. 2011, Astroza et al. 2015); therefore, in order to directly compare the 

identified damping ratios, the level of motion should be similar at the different damage 
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states. That comparison is not strictly possible here because of the random nature of the 

ambient excitation. As mentioned previously, the identified damping ratios account for 

all sources of energy dissipation in the building, as assumed in the underlying 

mathematical model of the SID methods used. 

 
Figure 4.6: Ratio between natural frequencies identified at different damage states and 
their counterparts identified at DS0 from ambient vibration test data. 

 
Figure 4.7: Equivalent damping ratios identified at different damage states from ambient 
vibration test data. 
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Since the mode shapes identified with the methods used herein are complex-

valued, the corresponding real-valued approximations were computed using the approach 

proposed by Imregun and Ewins (1993). Figure 4.8 shows the real-valued approximations 

of the mode shapes of the building identified at DS0 using the SSI-DATA method and 

AV data. 

 
Figure 4.8: Real-valued approximations of mode shapes of the building identified at DS0 
with the SSI-DATA method using the AMB1 test data. 

The polar plot representation of the identified mode shapes in Figure 4.9 indicates 

the level of non-classical damping in the identified modes. Most of the identified mode 

shapes are almost purely classically damped since all the vectors (each of them 

representing a measured degree of freedom) in a polar plot are approximately collinear. 

However, modes 2-L+To, 3-L, 4-L, and 5-L appear to have a higher degree of non-

classical damping than the other identified modes. Note that large estimation errors —

which are likely due to noise— can cause a classically-damped mode to be identified as 

non-classically damped. There is higher uncertainty in the identification of higher modes 

compared to lower modes. As discussed earlier, lower participation of higher modes in 

the building response implies lower SNR for the higher modes than for the lower modes. 

 
Figure 4.9: Polar plots of mode shapes identified at DS0 with the SSI-DATA method 
using the AMB1 test data. 
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The MAC was used to compare corresponding mode shapes estimated from the 

three output-only methods (Figure 4.10) using the AV test AMB1 conducted at DS0. 

Most of the MAC values along the diagonal (i.e., corresponding modes) of the matrix of 

MAC values were close to one, indicating that the mode shapes identified using different 

SID methods are consistent. The MAC value between modes 4 (2-T+To) and 6 (2-L+To) 

suggests some similarity in shape between them. A similar torsional component 

dominated the deformed shape of the building in these two modes, and the mode shapes 

differed primarily in their translational components. Because the higher modes are 

identified with higher estimation uncertainty, the MAC values between corresponding 

identified modes were consistently lower for higher modes than for lower modes. Similar 

results were obtained at all the states of damage but are not shown here due to space 

limitations. Note that the numbering of the modes in Figure 4.10 corresponds to that 

presented in Figure 4.8. 

 
Figure 4.10: MAC values between mode shapes estimated at DS0 using the different SID 
methods from the AMB1 test data. 

Figure 4.11 shows the MAC values between the mode shapes identified, using the 

SSI-DATA method with AV data, at different damage states and those identified at DS0. 

It is observed that lower modes (modes 1 to 5) remained almost unchanged as the damage 
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progressed, but higher modes (especially modes 8, 10, and 11 corresponding to 3-L, 4-L, 

and 5-L, respectively) changed at the states of highest damage (DS5 and DS6). Some off-

diagonal entries of the MAC matrix show some significant correlation between non-

corresponding modes. In particular, modes 1 (1-T+To) and 2 (1-L) show some correlation 

at DS0-DS1 and DS0-DS2, which is due to the crossing of these modes after the first 

seismic test FB:1-CNP100. Similarly, modes 4 (2-T+To), 5 (2-L), and 6 (2-L+To) show 

some correlation at DS0-DS2, DS0-DS3, and DS0-DS4. As pointed out before, these 

modes experienced mode crossing at damage states DS2, DS3, and DS4, which explains 

the large MAC values in the corresponding off-diagonal entries of the MAC matrix at 

those damage states.  

 
Figure 4.11: MAC values between mode shapes identified at different damage states and 
mode shapes identified at DS0 using the SSI-DATA method from the AMB1 test data. 
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The red lines in Figure 4.11 indicate modes that could not be identified using the 

SSI-DATA method with AV data. The corresponding normalized mode shapes 

(normalized with respect to the longitudinal component at the roof) identified at different 

damage states were also compared at each sensor location to analyze the potential of 

extracting damage location from comparison of corresponding mode shapes estimated 

before and after damage. These results are not presented herein due to space limitation. 

However, no clear trend was observed and it was not possible to identify the location of 

damage based on local differences of corresponding mode shapes estimated at different 

damage states. 

4.6.2. System identification based on 1.5%g RMS white noise base excitation 

Table 4.4 shows the natural frequencies and damping ratios identified using the 

three output-only and two input-output SID methods and the data recorded during the 

1.5%g RMS WN base excitation tests performed at different damage states (see Table 

4.1). Ten modes were identified using each of the three sets of WN test data (WN1A, 

WN2A, WN3A). They correspond to the first five longitudinal (1-L, 2-L, 3-L, 4-L, and 5-

L), the first three torsional (1-To, 2-To, and 3-To), and two coupled translational-

torsional (1-T+To and 2-L+To) modes. The natural frequencies identified using the 

various SID methods at each damage state (DS0, DS4 and DS5) are in good agreement. 

As in the case of AV data, the identified damping ratios, which are in the range 0−14%, 

show significantly higher variability across SID methods than the identified natural 

frequencies. The damping ratios identified using the 1.5%g RMS WN test data were 

significantly higher than those identified using the AV data. This observation confirms 
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the amplitude-dependent characteristic of identified damping ratios observed in other 

studies (e.g., Moaveni et al. 2011, Astroza et al. 2015). 

Table 4.4: Natural frequencies and damping ratios identified using 1.5%g RMS white-
noise base excitation test data. 

  Natural frequency (Hz)  Equivalent damping ratio (%) 
                 
 Mode SSI-

DATA 
NExT-
ERA EFDD DSI OKID-

ERA Mean c.o.v. 
(%)  SSI-

DATA 
NExT-
ERA EFDD DSI OKID-

ERA Mean c.o.v. 
(%) 

W
N

1A
 / 

D
S0

 

1-L 1.24 1.41 1.34 1.40 1.37 1.35 5.04  10.69 10.13 9.40 6.75 8.30 9.05 17.32 
1-T+To 1.68 1.69 1.68 1.70 1.71 1.69 0.74  4.76 4.34 2.29 4.00 1.79 3.44 38.24 

1-To 2.28 2.28 - 2.29 - 2.28 0.25  3.64 4.16 - 2.34 - 3.38 27.74 
2-L 5.83 5.71 5.84 5.90 5.69 5.79 1.55  4.98 1.41 4.42 5.85 1.62 3.66 55.28 

2-L+To 6.18 6.51 6.35 6.32 6.20 6.31 2.11  2.39 2.46 2.54 3.19 1.16 2.35 31.38 
2-To 9.37 - - 9.28 - 9.33 0.68  4.31 - - 4.54 - 4.43 3.68 
3-L 11.02 10.31 10.29 10.19 10.19 10.40 3.37  3.69 1.51 5.35 4.54 5.56 4.13 39.70 
3-To - 10.97 - 11.97 - 11.47 6.16  - 0.61 - 1.09 - 0.85 39.93 
4-L 18.07 18.51 18.46 18.21 19.63 18.58 3.32  3.07 4.25 5.37 6.65 4.86 4.84 27.40 
5-L 22.84 22.91 22.92 22.61 23.28 22.91 1.05  4.34 2.96 2.05 4.73 1.41 3.10 46.13 

                 

W
N

2A
 / 

D
S4

 

1-L 0.81 0.82 0.84 0.86 0.88 0.84 3.42  6.89 6.41 6.39 8.89 9.09 7.53 17.86 
1-T+To 1.57 1.52 1.57 1.50 - 1.54 2.40  4.35 3.33 0.72 5.08 - 3.37 56.65 

1-To 1.71 1.77 - 1.74 - 1.74 1.72  4.23 4.16 - 1.24 - 3.21 53.16 
2-L 4.52 4.59 4.37 4.36 4.23 4.41 3.22  3.39 7.04 2.39 8.60 3.50 4.98 53.79 

2-L+To 4.87 4.71 - 4.84 4.91 4.83 1.79  3.54 3.81 - 1.59 0.20 2.29 74.66 
2-To - - - - - - -  - - - - - - - 
3-L 8.71 8.63 8.72 8.37 8.59 8.60 1.65  4.89 3.93 3.39 5.00 5.84 4.61 20.83 
3-To - - - 8.61 - 8.61 -  - - - 1.40 - 1.40 - 
4-L 12.75 12.46 12.81 12.97 13.24 12.85 2.24  4.87 4.98 0.12 3.03 3.95 3.39 58.76 
5-L 18.22 18.52 18.65 18.38 - 18.44 0.99  5.80 2.95 2.44 4.43 - 3.91 38.91 

                 

W
N

3A
 / 

D
S5

 

1-L 0.63 0.63 0.63 0.65 0.67 0.64 2.82  7.13 6.69 4.97 8.66 10.06 7.50 25.92 
1-T+To 1.38 1.40 1.37 1.38 - 1.38 0.98  6.00 5.92 3.60 5.10 - 5.16 21.60 

1-To 1.72 1.80 - 1.73 - 1.75 2.49  6.83 7.60 - 5.08 - 6.50 19.86 
2-L 3.17 3.18 3.03 3.28 3.30 3.19 3.40  10.81 13.38 7.59 10.18 9.99 10.39 19.94 

2-L+To 3.70 3.55 3.58 3.53 3.84 3.64 3.56  1.60 0.90 1.52 1.68 4.99 2.14 75.99 
2-To 5.19 5.01 - 5.08 - 5.09 1.78  1.38 1.32 - 1.26 - 1.32 4.55 
3-L 6.26 6.37 6.41 6.48 6.43 6.39 1.30  8.68 9.01 5.09 6.75 4.08 6.72 32.16 
3-To - - - 8.23 - 8.23 -  - - - 0.73 - 0.73 - 
4-L 11.16 11.18 11.49 12.08 12.09 11.60 3.98  1.82 2.00 2.64 3.68 5.52 3.13 48.54 
5-L 16.07 15.02 14.64 15.42 14.57 15.14 4.08  1.17 3.60 2.90 4.40 1.69 2.75 48.37 

              T: transverse / L: longitudinal / To: torsion 

Figure 4.12, Figure 4.13, and Figure 4.14 show graphically the information 

reported in Table 4.4. Because the shake table excited the building specimen in its 

longitudinal direction only, the identification of the modes with torsional and transverse 

components was more difficult than when using the AV data, since the contributions of 
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those modes in the building response are substantially lower than those of the 

longitudinal modes (Figure 4.4). In particular, the mode 2-T+To cannot be identified 

using the 1.5%g RMS WN test data. Moreover, it is observed that the EFDD method was 

not able to identify the higher modes that are poorly excited by the longitudinal white 

noise base excitation, because peaks on the plots of the singular values of the PSD matrix 

of the measured response vector associated to these modes could not be accurately 

identified.  

Figure 4.12 shows that all the identified natural frequencies consistently 

decreased as the damage induced by the different seismic tests progressed, with the 

longitudinal modes (1-L, 2-L, 3-L, 4-L, and 5-L) experienced a faster reduction. Because 

1.5%g RMS WN base excitation tests were performed only at damage states DS0, DS4, 

and DS5 (Table 4.1), studying the effect of each seismic excitation on the identified 

modal parameters was not possible. However, it is observed that the amplitude of the 

reduction (in percent) of the natural frequencies from DS0 to DS4 was similar to that 

from DS4 to DS5. This confirms that the identified natural frequencies abruptly 

decreased at DS5, which is in agreement with the results obtained using AV data (Table 

4.3 and Figure 4.5). 

Due to the higher amplitude of the building response in the WN base excitation 

than in the AV tests (Figure 4.4), no mode crossing was observed for the WN test data. 

During the WN base excitation tests, the level of excitation was high enough to reduce 

the longitudinal stiffness of the building such that the first longitudinal mode 

corresponded to the lowest natural frequency at all states of damage, while the frequency 

of mode 2-L was always lower than the frequency of mode 2-L+To. 
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Figure 4.12: Natural frequencies identified at different damage states from 1.5%g RMS 
white noise base excitation test data. 

The reduction of the building natural frequencies as the damage progressed is 

evident in all modes, as already observed when using the AV data. Figure 4.13 shows the 

ratio between the natural frequencies identified at different damage states and their 

counterparts identified at DS0. The identified natural frequency of the first longitudinal 

mode shows the highest relative reduction. The natural frequency of mode 1-L decreased 

by approximately 38% and 52% (with respect to DS0) at DS4 and DS5, respectively. In 

contrast, the natural frequency of mode 1-T+To (with the smallest relative reduction), 

decreased only by 8% and 18% at DS4 and DS5, respectively. 

As expected and previously observed (e.g., Moaveni et al. 2011), the natural 

frequencies identified from WN base excitation test data were lower than those identified 

from AV data (compare Figure 4.6 and Figure 4.13). The difference is largest for mode 1-

L and becomes, in general, progressively smaller for higher modes (2-L, 3-L, 4-L, 5-L). 
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At DS5, all modes except mode 1-T+To showed a much higher relative reduction in their 

identified natural frequency for the WN base excitation data than for the AV data. Since 

the building response is intrinsically nonlinear, the equivalent secant stiffness of the 

structure reduces as the amplitude of the response increases. 

 
Figure 4.13: Ratio between natural frequencies identified at different damage states and 
their counterparts identified at DS0 from 1.5%g RMS white-noise base excitation test 
data. 

Figure 4.14 shows that the damping ratios identified using the five different 

methods do not exhibit any clear trend as damage progresses; however, the highest 

estimated damping ratios are associated with the longitudinal modes. Since the seismic 

and WN base excitations were applied only in the longitudinal direction of the building, it 

is expected to obtain larger damping ratios for the longitudinal modes than for the other 

identified modes. Damping ratios identified from AV data (Figure 4.7) are considerable 

smaller than those identified from WN test data (Figure 4.14), especially for lower 

modes. This observation indicates the amplitude-dependency characteristic of the 

estimated damping ratios. Potential sources of energy dissipation are provided by the 

NCSs, their interaction with the structure, and hysteretic material behavior. 
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Figure 4.14: Equivalent damping ratios identified at different damage states from 1.5%g 
RMS white-noise base excitation test data. 

The real-valued approximations of the mode shapes of the building identified at 

DS0 with the DSI method using the 1.5%g RMS WN test data are shown in Figure 4.15. 

These mode shapes correspond to the same mode shapes identified using the AV data 

(Figure 4.8), except for mode 2-T+To, which could not be identified from the WN test 

data, as discussed earlier. 

 
Figure 4.15: Real-valued approximations of mode shapes of the building identified at 
DS0 with the DSI method using the WN1A test data. 

The polar plots in Figure 4.16 show that half of the identified mode shapes were 

estimated as almost purely classically damped (as indicated by the quasi-collinearity of 
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the vectors in the polar plot). Modes 2-L+To, 2-To, 3-To, 4-L, and 5-L were estimated 

with a higher degree of non-classical damping than the other modes, but a note of 

caution: the identified non-classical damping characteristics may be due to estimation 

errors. Higher modes contribute less to the response of the building than lower modes 

and, consequently, suffer from lower SNRs. 

 
Figure 4.16: Polar plots of mode shapes identified at DS0 with the DSI method using the 
WN1A test data. 

In order to compare the mode shapes identified using the five different SID 

methods, Figure 4.17 shows the MAC values between them at DS0. The MAC values 

along the diagonal of the MAC matrix are close to one, indicating that corresponding 

mode shapes identified using different methods are very similar. However, the mode 

shapes identified using the SSI-DATA, DSI, and NExT-ERA methods show better 

agreement; moreover, these three methods are able to identify more modes than the 

EFDD and OKID-ERA methods. The MAC value between modes 4 (2-L) and 5 (2-

L+To) indicates some correlation between these two modes, which is not surprising since 

the longitudinal component dominates the deformed shape of the building in these two 

modes, and these two mode shapes differ primarily in their torsional components. Similar 

to the results obtained using AV data (Figure 4.10), the MAC values corresponding to the 

higher modes are lower than those corresponding to the lower modes. Similar MAC value 

results were obtained at damage states DS4 and DS5; they are not shown here due to 
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space limitation. Note that the numbering of the modes corresponds to that presented in 

Figure 4.15. 

 
Figure 4.17: MAC values between mode shapes estimated at DS0 using different SID 
methods from the WN1A test data. 

In order to detect the effects of damage on the identified mode shapes, Figure 4.18 

shows the MAC values between the mode shapes identified at different damage states 

(DS4 and DS5) and the mode shapes identified at DS0 using the DSI method. The lower 

modes (modes 1 to 5) remain basically unchanged as the damage progresses, but the 

higher modes (modes 6 through 10 corresponding to 2-To, 3-L, 3-To, 4-L, and 5-L, 

respectively) changed at damage states DS4 and DS5. The same correlation between 

modes 4 (2-L) and 5 (2-L+To) as described above is observed. 

 
Figure 4.18: MAC values between mode shapes identified at different damage states and 
mode shapes identified at DS0 using the DSI method from the WN1A test data. 
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The SID study using the WN base excitation test data presented herein was also 

performed considering the rocking input excitation at the base of the building specimen, 

which was computed from the vertical accelerometers located at the first level. The SID 

results obtained from this multiple input (longitudinal and rocking base accelerations) - 

multiple output (translation accelerations at all floor levels) system model are similar to 

the results presented herein, which are based on a single input (longitudinal base 

acceleration) - multiple output (translation accelerations at all floor levels) system model. 

Relative differences of less than 7% for the natural frequencies (1.7% on average) and 

less than 30% for the damping ratios (15% on average) were obtained using both system 

models. 

4.6.3. System identification based on 3.0% and 3.5%g RMS white-noise base 

excitation 

In addition to the 1.5%g RMS WN base excitation, WN base excitations with a 

RMS of 3.0%g were applied to the building at DS0 and DS4; and WN base excitations 

with a RMS of 3.5%g were applied at DS0 and DS5. Figure 4.19 shows the natural 

frequencies and damping ratios identified with the DSI method using the input-output 

data recorded during WN base excitation tests of different amplitudes. The identified 

natural frequencies consistently decreased as the amplitude of the excitation increased, 

which is valid for all modes identified and the three damage states considered. These 

results clearly show the effect of cracking in the concrete and the consequent loss of the 

building equivalent stiffness during the WN base excitation tests, since cracks grow as 

the amplitude of the base excitation increases. On the other hand, the identified damping 
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ratios do not exhibit a clear trend as a function of the amplitude of the WN base 

excitation. 

 
Figure 4.19: Effect of the amplitude of the WN base excitation on the modal properties 
identified using the DSI method: (a) natural frequencies, and (b) damping ratios. 

Consistent results to those presented for 1.5%g RMS WN base excitation test data 

were obtained from 3.0% and 3.5%g RMS WN base excitation test data. For WN tests 

WN1B, WN1C, WN2B, and WN3B, the natural frequencies identified using the five 

different SID methods were in very good agreement, with coefficient of variations lower 
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than 7.5%. Method-to-method variability of the identified damping ratios was 

considerable larger, with coefficient of variations in the range 10−97%. 

4.7. Estimated response and modal decomposition 

Figure 4.20 compares the measured absolute acceleration time histories at the 

second and roof levels of the building with their counterparts predicted using the state-

space model identified with the DSI method from WN base excitation test data at DS0 

(test WN1C) and DS5 (test WN3B). This comparison was carried out for all WN base 

excitation tests. In each case, an excellent to very good match is obtained between the 

measured and predicted responses at all floors. However, the level of discrepancy 

between the recorded and predicted responses increases as the level of damage in the 

building specimen increases. This is because the level of nonlinearity in the structural 

response increases for the same level of input excitation as the damage progresses. 

Consequently, the LTI model assumed for SID purposes was not able to predict the 

building response accurately; therefore, discrepancies between the measured and 

predicted responses increased as the level of damage in the building and thus nonlinearity 

in its response increased. In other words, as the damage progresses in the building, 

detailed features of the measured building response time histories increasingly cannot be 

reproduced by a LTI model. 
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Figure 4.20: Comparison between measured and predicted (using identified state-space 
model) absolute translational acceleration responses at the second and roof levels: (a) 
DS0 (test WN1C), and (b) DS5 (test WN3B). 

To study the relative contributions of the different modes to the building response, 

the modal decomposition of the building absolute acceleration response (see Appendix A 

for details and derivations) was estimated using the state-space model identified using the 

DSI method. Figure 4.21 shows the modal contributions to the building absolute 

acceleration response time histories at the second and roof levels at DS0 (test WN1C) and 

DS5 (test WN3B). The relative contribution of the higher modes to the total response was 

larger at the second floor than at the roof level. More importantly, as the damage in the 

structure increased (DS0 to DS5), the relative contributions of the higher modes (2-L, 3-

L, and 4-L) increased drastically as compared to DS0; and thus the relative contribution 

of the fundamental mode (1-L) decreased considerably. This is due to the significant 

change (i.e., decrease) in the equivalent natural frequencies (especially of the longitudinal 

modes 1-L, 2-L, 3-L, and 4-L) of the building with the increase of damage. Similar 

results were obtained by analyzing the modal decomposition of the floor relative (to the 

base) acceleration responses predicted using the state-space model identified at different 

damage states. 
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Figure 4.21: Modal decomposition of the identified absolute acceleration response time 
histories: (a) roof level at DS0 (test WN1C); (b) roof level at DS5 (test WN3B); (c) 
second floor level at DS0 (test WN1C); and (d) second floor level at DS5 (test WN3B). 
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4.8. Apparent story and global stiffness loss 

The apparent story stiffness (defined as the ratio between the total story shear 

force and the interstory drift) and the apparent global structural stiffness (defined as the 

ratio between the total base shear and the roof drift) were estimated experimentally 

through linear least-squares fitting using the WN base excitation test data. 

The total (inertial) story shear forces were computed as 

 ( ) ( )
6

/ 1
1

1,...,6i i k k
k i

V t m a t        i+
= +

= − ⋅ =∑  (4.2) 

where i / i+1V  denotes the story shear at mid-height between levels i  and ( )1i +  of the 

building, ka  is the absolute acceleration at level k  in the EW direction (computed as the 

average of the accelerations measured at the four corners), and km  is the tributary mass 

of level k . The absolute displacements of all floors in the EW direction were computed 

through double integration of the recorded floor absolute acceleration time histories in the 

EW direction. 

By using the story shear forces and interstory drifts obtained from test WN1A as 

reference, the apparent story and global stiffness losses ( )1 dam refk k− , where damk  is the 

stiffness of the damaged building and refk  is the reference stiffness, were computed for 

tests WN1B, WN1C, WN2A, WN2B, WN3A, and WN3B [see Figure 4.22(a)]. Since the 

mass properties of the building remained unchanged, the ratio between the natural 

frequencies of the building in its damage states (tests WN1B, WN1C, WN2A, WN2B, 
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WN3A, and WN3B) and its reference state (test WN1A), dam reff f , can be 

approximated as 

 dam dam

ref ref

f k
f k

=  (4.3) 

Figure 4.22(a) shows clearly the degradation of the apparent story and global 

stiffnesses with increasing intensity of the seismic motion applied to the building. During 

the WN base excitation tests at DS0 (WN1A, WN1B, WN1C), the reduction of the 

apparent stiffness (relative to WN1A test) reached almost 20% (at WN1C) and was 

practically the same at the global and story levels. For damage states DS4 and DS5, the 

apparent story and global stiffnesses were reduced by approximately 60% (tests WN2A 

and WN2B) and 80% (tests WN3A and WN3B), respectively. Moreover, the apparent 

story stiffness losses were higher at the lower stories of the building, which is in 

agreement with the observed distribution of damage over the height of the building. 

Degradation of the stiffness of the building can be also estimated from the 

identified natural frequencies reported in Figure 4.12 and Figure 4.19(a). This is done by 

calculating, for each mode, the ratio between the natural frequencies estimated from tests 

WN1B, WN1C, WN2A, WN2B, WN3A, and WN3B, and the natural frequency 

estimated from test WN1A. Figure 4.22(b) shows the ratio dam reff f  for the longitudinal 

modes (1-L, 2-L, 3-L, 4-L, and 5-L) of the building computed from the SID results 

shown in Figure 4.12 and Figure 4.19(a). The ratio dam reff f  obtained from Equation 

(4.3) for the global stiffness is also shown in Figure 4.22(b). It is observed that the ratio 

dam reff f  estimated from the global response of the building correlates very well with 
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the ratio computed from the identified natural frequencies of mode 1-L. This suggests 

that the global hysteretic response of the building (described by the total base shear 

versus roof drift) is dominated by the first longitudinal mode. The ratio dam reff f  of 

other longitudinal modes (2-L to 5-L) is larger than the ratio estimated from the global 

response of the building and, in general, the ratio dam reff f is larger (less reduction in 

stiffness) for higher modes. 

 
Figure 4.22: (a) Apparent story and global stiffness losses during the white-noise base 
excitation tests; and (b) ratios between natural frequencies of the building in its damaged 
states and its reference state obtained from the system identification and global stiffness 
loss results. 

4.9. Conclusions 

A full-scale 5-story reinforced concrete building fully outfitted with nonstructural 

components and systems (NCSs) was built and tested on the outdoor unidirectional 

NEES-UCSD shake table in April-May 2012. The purpose of this experimental program 

was to study the response of the structure and NCSs and their dynamic interaction during 

seismic excitations of increasing intensity. A suite of six earthquake motions were 

carefully designed and applied to the fixed-base (FB) building to progressively damage 

the structure and NCSs in a realistic manner. Vibration response data from different 
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sources of excitation, including ambient vibration (AV) and low-amplitude white-noise 

(WN) base excitation tests, were recorded at different damage states of the building to 

conduct system identification (SID) studies. In particular, AV data were recorded before 

and after each seismic test, and WN base excitation tests were conducted at key damage 

states. Using the structural vibration data recorded by an array of 24 uni-axial 

accelerometers, five state-of-the-art SID methods, including three output-only (SSI-

DATA, NExT-ERA and EFDD) and two input-output (OKID-ERA and DSI), were 

employed to identify the modal properties of the structure (i.e., natural frequencies, 

damping ratios, and mode shapes) at different damage states. The low intensity of the 

excitation during AV and WN tests facilitated identifying the modal properties of an 

equivalent linear elastic viscously damped time-invariant model of the FB building. 

These identified modal properties changed at different stages of the test protocol because 

of the structural and nonstructural damage inflicted to the structure and NCSs by the 

earthquake base motions. 

Eleven and ten modes were identified using the AV and WN base excitation test 

data, respectively. Natural frequencies and mode shapes identified using different SID 

methods were found in very good agreement, while the identified damping ratios showed 

higher method-to-method variability. The results showed that the identified natural 

frequencies decreased as damage in the structural and NCSs progressed. The magnitude 

of the reduction of the identified natural frequencies was greater for the longitudinal 

modes of the building because the equivalent stiffness of the building in that direction 

degraded more because it coincided with the direction of the WN and seismic excitations. 

This resulted in mode crossings at different damage states. Since the structural response 
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was intrinsically nonlinear —despite the low amplitude of the excitation— the equivalent 

secant stiffness of the building reduced as the amplitude of the response increased for a 

given damage state.  

The damping ratios identified using AV data were considerably lower than those 

identified using low-amplitude WN base excitation data. The identified damping ratios 

did not show a clear trend as a function of damage, but longitudinal modes attained 

higher values than those of the coupled translational-torsional and torsional modes. This 

is most likely due to the higher hysteretic damping (or hysteretic energy dissipated) 

associated with longitudinal modes (direction of the excitation), which was identified as 

equivalent viscous damping because of the underlying mathematical model assumed in 

the SID methods used. The correlation between mode shapes at different damage states 

showed some variations but mostly at the higher modes; it is unclear if this was the effect 

of damage or due to estimation uncertainty because of the low SNR associated in the 

identification of those modes. 

Detailed visual inspections of the damage performed between the seismic tests 

permitted correlating the identified modal parameters and their changes with the actual 

damage observed in the building. Apparent story and global stiffnesses of the building 

were computed from the experimental data recorded during the WN base excitation tests. 

The loss of global apparent stiffness was consistent with the reduction of the natural 

frequency of the first longitudinal mode (1-L) identified using the SID methods, 

suggesting that the global hysteretic response of the building was dominated by the first 

longitudinal mode. Higher modes showed less reduction in their associated stiffnesses. 

The modal contributions to the absolute acceleration response were also studied. As the 
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damage in the building progressed, the relative contribution of the higher modes 

increased significantly, and thus the relative contribution of the fundamental mode 

decreased notably. 

This research provided a unique opportunity to investigate the performance of 

different state-of-the-art SID methods when applied to vibration data recorded with high 

spatial resolution in a real building subjected to progressive damage induced by a realistic 

source of dynamic excitation. The identified modal properties of the building at different 

levels of damage presented and discussed in this chapter provides the information 

required for vibration-based damage identification using linear finite element model 

updating. This case history contributes an important dataset for the structural and 

earthquake engineering community. 
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CHAPTER 5 

DYNAMIC PROPERTIES OF A FULL-SCALE FIVE-

STORY BASE-ISOLATED BUILDING TESTED ON A 

SHAKE TABLE 

5.1. Introduction 

Seismic protection systems are becoming very important and popular 

technologies aiming to protect civil structures and their nonstructural components and 

systems (NCSs) during earthquakes (Housner et al. 1997, Naeim and Kelly 1999, Warn 

and Ryan 2012, de la Llera et al. 2015). Good performance of isolated structures during 

recent strong earthquakes (e.g., Celebi 1996, Moroni et al. 2012, Gavin and Nigbor 2012, 

Hijikata et al. 2012, Miwada et al. 2012, Kasai et al. 2013) has shown the effectiveness of 

this technology to mitigate and even avoid damage, allowing continuity of operation of 

structures following intense events. In the case of building structures, seismic isolation is 

usually provided at the base by introducing a flexible horizontal interface with high 

internal damping between the structure and its foundation. This results in an elongation of 

the fundamental period of the building, usually much longer than predominant periods of 
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typical ground motions, and an increase of the energy dissipation capabilities of the 

system. The structure experiences a reduction of floor accelerations and interstory drift 

demands due to the elongation of the fundamental period and because the lateral 

deformations are concentrated in the isolation layer. 

In spite of the growing number of seismically isolated structures built in the last 

twenty years, especially in Japan after the 1995 Kobe earthquake, availability of vibration 

data recorded on densely instrumented buildings during large earthquakes is still limited. 

Nonetheless, important research efforts have focused on investigating the response and 

behavior of base-isolated (BI) buildings during earthquakes. Maison and Ventura (1992) 

studied the behavior of the San Bernardino County Foothill Communities Law and 

Justice Center building during the 1990 Upland earthquake. Several authors investigated 

the response of BI buildings during the 1994 Northridge earthquake (e.g., Celebi 1996, 

Stewart et al. 1999, Nagarajaiah and Sun 2000). Ventura et al. (2003) and Loh et al. 

(2011) identified the dynamic properties of buildings using ambient vibrations and low 

level earthquake excitations. Furukawa et al. (2005) conducted the identification of a 

building instrumented during the 1995 Kobe earthquake by using the prediction error 

method and a nonlinear single degree of freedom system. Gueguen (2012) investigated 

the predominant frequency of a building using the frequency domain decomposition 

(FDD) method with ambient vibration data and the Wigner-Ville distribution with low to 

moderate vibrations from earthquake events. Siringoringo and Fujino (2014,2015) 

analyzed the response and conducted the identification of the modal characteristics of a 

building instrumented during various earthquake events, including the 2011 Tohoku 
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earthquake. Sridhar et al. (2014) analyzed the vibration data recorded in the Christchurch 

Women’s hospital during low to moderate earthquake events. 

Although limited due to the high costs they involve, shake table tests of large or 

full-scale building specimens have provided invaluable data. In particular, test programs 

conducted on BI buildings at the E-Defense shake table in Japan represent the first efforts 

at investigating the response of steel and reinforced concrete (RC) buildings using 

different types of isolation technologies. A first test program consisted of a full-scale 

four-story RC frame building tested in two phases: in 2008 the specimen was subjected to 

various types of horizontal excitations and in 2010 to horizontal and vertical input 

excitations (Sato et al. 2011, Furukawa et al. 2013). Two isolation systems were 

investigated, the first consisting of natural rubber bearing combined with U-shaped steel 

dampers and the second of high-damping rubber bearings (HDRBs). A second test 

program consisted of a full-scale five-story steel moment frame building tested in 2011 

and considered two different isolation solutions: triple friction pendulum bearings and a 

combination of lead rubber and cross-linear bearings (Ryan et al. 2012, Sasaki et al. 

2012). 

In 2012, a landmark project was conducted on the NEES@UCSD shake table. A 

fully furnished full-scale five-story RC frame building was tested in two configurations: 

BI and fixed at its base. The goal of the test program was to investigate the response of 

the structure and NCSs, their dynamic interaction when subjected to seismic base 

excitation of different intensities, and the mitigating effects of base isolation on the 

structure and NCSs (Chen et al. 2013,2015, Pantoli et al. 2015a). In the BI configuration, 

a sequence of seven earthquake motion tests were designed and applied to the building to 
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progressively increase the seismic demand on the structure and NCSs. Before and after 

each seismic test, low-amplitude white noise (WN) base excitation tests with three 

different amplitudes were conducted and ambient vibration (AV) data were continuously 

recorded for approximately sixteen days, from before the beginning until after the end of 

the seismic tests. Vibration data recorded in the test specimen provide a unique 

opportunity to identify the dynamic characteristics of the building during construction 

and placement of major NCSs (Astroza et al. 2015a) and on both configurations, fixed 

(Astroza et al. 2015b) and isolated at its base. 

In this chapter, the effectiveness of the isolation system in reducing the floor 

acceleration and interstory drift demands by elongating the predominant period of the 

building, concentrating the lateral displacement in the isolation layer, and increasing the 

energy dissipation capability is first investigated. Then, the structural vibrations recorded 

during low-amplitude WN base excitation tests and AVs are used to identify the modal 

properties of the BI building as well as to investigate the amplitude-dependency of the 

dynamic characteristics of the specimen. Because of the low intensity of the WN base 

excitations and AVs, a quasi-linear response of the system is assumed and the modal 

parameters of an equivalent viscously-damped linear elastic time invariant model are 

identified. Using the structural vibration data recorded by twenty six accelerometers, five 

system identification (SID) methods, including three output-only (SSI-DATA, NExT-

ERA and EFDD) and two input-output (OKID-ERA and DSI), are used to identify the 

modal properties of BI building. 
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5.2. Description of the building and isolation system 

5.2.1. Building specimen 

The test structure was a full-scale five-story cast-in place RC building fully 

outfitted with a broad array of NCSs. The building had two bays in the longitudinal 

direction (direction of shaking) and one bay in the transverse direction, with plan 

dimensions of 11.0×6.6 m, respectively. The building had a floor-to-floor height of 4.27 

m, a total height (measured from the top of the foundation to the top of the roof slab) of 

21.34 m and an estimated total weight of 3010 kN for the bare structure and 4420 kN for 

the structure with all the NCSs, both excluding the foundation, which weighted 

approximately 1870 kN. Two identical one-bay special RC moment resisting frames 

provided the seismic resisting system. The frames were oriented East-West (direction of 

shaking) with one placed on the north face of the building and the other on the south face. 

The beams had different details at different floors. Floors two and three were constructed 

with ASTM A1035 high strength steel frame beams with a nominal yield strength of 830 

MPa, floor four had a special moment frame with upturned hybrid beams (post-tensioned 

by four tendons and connected to the columns by ductile rod connectors), the fifth floor 

had an off-the-shelf ductile connector  frame beam, and the roof had a conventional 

concrete frame beam. A total of six 0.66×0.46 m columns were reinforced with 6 #6 and 

4 #9 longitudinal bars and a prefabricated transverse reinforcement. The floor system 

consisted of a 0.2 m thick concrete slab for all floors. There were two main openings on 

each slab to accommodate the stairs and elevator. Two 0.15 m thick concrete shear walls 

in the transverse direction provided the support for the elevator guiderails and additional 
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torsional stiffness to the building. Metal stairs, interior partition walls, exterior façade, 

medical equipments, computer servers, a cooling tower, an air handling unit, etc, 

composed the NCSs installed on the specimen. Figure 5.1 shows the test specimen and 

schematic elevation and plan views. Detailed information about the structural system, 

nonstructural components and their design considerations can be found in Chen et al. 

(2013,2015) and Pantoli et al. (2015a), while the complete dataset of the project in 

Hutchinson et al. (2014) and Pantoli et al. (2015b).  

  

 

Figure 5.1: Test specimen: (a) completed building, (b) schematic elevation view, (c) 
schematic plan view. (Dimensions in m) 

5.2.2. Isolators 

The building was mounted on four HDRBs, which were placed between the shake 

table platen and the foundation near the four corners of the building. The isolators had a 

0.65 m rubber diameter and a 0.10 m inside diameter. The total height of the bearings 

was 0.34 m, with 34 layers of 0.6 cm thick rubber corresponding to a total rubber height 

of 0.20 m and 33 steel shim plates with a nominal thickness of 0.3 cm each (Figure 5.2a 

and Figure 5.2b). Rubber layers and steel plates were protected with an exterior rubber 
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layer of 0.65m in diameter. Top and bottom cover plates of 2.0 cm thick were provided to 

connect the bearings with the shake table platen and foundation.  

 

 
 

Figure 5.2: Isolator details: (a) schematic view, (b) actual isolator installed, (c) hysteretic 
curves of quality control tests. (Dimensions in mm) 

Before the installation of the isolators, they were individually tested following 

standard quality control procedures. Such procedures consisted of seven sinusoidal, fully 

reversed sequences, to shear strains ranging from 25% to 150% at 25% increments. The 

data from the first cycle (scragging cycle) was discarded. Figure 5.2c shows the force-

displacement curves obtained for 25, 100, and 150% shear strain. Effective or secant 

stiffness (keff) and effective damping ratio (ξeff) (equivalent viscous damping from 

hysteretic damping) are computed from the quality test data as (Priestley et al. 1996) 

 max min

max min
effk

F F
=

−
∆ − ∆

 (5.1) 

 
2
max

1
2

D
eff

effk
W

ξ =
π ∆

 (5.2) 

where maxF , minF  = maximum and minimum applied forces, max∆ , min∆  = maximum 

and minimum displacements of the isolator, and DW  = energy dissipated in one hysteresis 
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loop at displacement max∆ . Figure 5.3 shows the values of effk  and effξ  obtained from all 

the quality tests. It is noted that the shear strain is computed as the relative displacement 

between the top and bottom of the isolator divided by the total rubber height. Results 

obtained for different isolators are very similar and consistent with the behavior of 

HDRBs. The bearings exhibit a nonlinear behavior for shear strains equal to or larger 

than 25%. A high initial secant stiffness of about 1400 kN/m decreases as the shear strain 

increases, reaching a constant value of 750 kN/m at shear strains equal to or larger than 

100%. The effective damping ratio decreases almost linearly as the shear strain increases, 

from a value of 19% at 25% shear strain down to a value of 11% at 150% shear strain. 

 
Figure 5.3: Effective properties of the isolators obtained from quality tests: (a) secant 
stiffness (keff), (b) effective damping ratio (ξeff). 

5.3. Instrumentation plan test protocol 

5.3.1. Instrumentation array 

The building was instrumented with a dense accelerometer array consisting of 

four triaxial accelerometers per floor, one at each corner as represented by red circles in 

Figure 5.1c. In addition, two triaxial accelerometers were placed on the North-East (N-E) 

and South-West (S-W) corners of the shake table platen. The accelerometers were force-
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balance Episensor, with a full-scale of ±4g, a frequency bandwidth DC–200 Hz, and a 

wide dynamic range of 155dB. The data acquisition system of these accelerometers 

(DAQ1) consisted of Quanterra Q330 data loggers from Kinemetrics, Inc., which 

includes signal conditioning, analog-to-digital (A/D) conversion, GPS time stamping for 

synchronization across multiple nodes, local memory buffer, and IP-network 

communication capabilities. This DAQ sampled data at 200 Hz. Another completely 

independent DAQ consisted of eight distributed National Instruments PXI chassis 

(DAQ2). Each chassis was capable of recording data from a maximum of 64 sensors 

channels. Sensors to monitor the acceleration and forces in specific NCSs and 

displacements and strains in the structural skeleton and various NCSs were included in 

this DAQ, which sampled data at 240 Hz. 

In this study, the acceleration response of the building measured by twenty six 

accelerometers (two on each translational direction of each floor and two in the 

longitudinal direction at the shake table platen) sampled at 200 Hz is used to identify the 

dynamic properties of the test specimen. Before the SID process, the time series were 

detrended and filtered using a band-pass infinite impulse response (IIR) Butterworth filter 

of order 4 with cut-off frequencies at 0.1 and 25.0 Hz. This range covers all the modes 

having an important participation in the response of the system. 

Displacement transducers (string potentiometers) in DAQ2 are used to define the 

cut-off frequencies of the filter applied to the acceleration data. As described later, this is 

done by minimizing the discrepancy between the displacement measured directly by 

string potentiometers and the corresponding displacement computed by double 

integration of the acceleration measurements. 
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5.3.2. Dynamic tests 

The seismic tests on the building in the BI configuration were conducted in April 

2012. In addition to the seismic tests, ambient vibration data were continuously recorded 

from April 13, 2012 to April 29, 2012. Low-amplitude WN base excitation tests using the 

NEES@UCSD shake table were carried out before and after each seismic test. The 

seismic input motions were designed and applied to the building with the intent to 

progressively increase the seismic demand on the structure and NCSs. Two 

serviceability-level spectrally-matched motions using Canoga Park and LA City Terrace 

(both corresponding to the 1994 Ms=6.7 Northridge earthquake) as seed motions and four 

actual motions, San Pedro from the 2010 Mw=8.8 Maule-Chile earthquake and Ica 

amplitude-scaled (50, 100, and 140%) from the 2007 Mw=8.0 Pisco-Peru earthquake, 

were applied to the building. To preserve the structure for the fixed-base testing phase, 

the input motions in the BI configuration were defined so that the peak interstory drift 

ratio remained less than 0.5%. In addition, it was desirable not to exceed the design limit 

of 150% shear strain in the isolators. It is noted that seismic and WN base excitations 

were applied in the East-West (E-W) direction, which coincides with the longitudinal 

direction of the building. Figure 5.4 shows the acceleration time histories of the seismic 

input motions (achieved on the shake table) and their displacement and pseudo-

acceleration elastic response spectra (RS) for a damping ratio of 5%. 



www.manaraa.com

147 
 

   
Figure 5.4: Achieved earthquake input motions in the BI building: (a) acceleration time 
histories, (b) elastic displacement RS (ξ=5%), (c) pseudo-acceleration RS (ξ=5%). 

 Table 5.1 summarizes the seismic test protocol and the recorded data of the BI 

building used in this study. This table includes the nominal and actual (achieved) root-

mean-square (RMS) of the acceleration input excitations corresponding to the low-

amplitude WN base excitation tests. 

Table 5.1: Dynamic tests used in this study. 

Date Description Name RMS (%g) 

April 16, 
2012 

Low-amplitude white noise base excitation WN1A / WN1B / WN1C Nominal: 1.5 / 3.0 / 3.5 
Actual: 2.01 / 3.20 / 3.56 

Canoga Park - 1994 Northridge earthquake BI1-CNP100 – 

Low-amplitude white noise base excitation WN2A / WN2B / WN2C Nominal: 1.5 / 3.0 / 3.5 
Actual: 1.34 / 2.59 / 3.02 

LA City Terrace - 1994 Northridge earthquake BI2-LAC100 – 

Low-amplitude white noise base excitation WN3A / WN3B / WN3C Nominal: 1.5 / 3.0 / 3.5 
Actual: 1.27 / 2.57 / 3.03 

April 17, 
2012 

LA City Terrace - 1994 Northridge earthquake BI3-LAC100 – 

Low-amplitude white noise base excitation WN4A / WN4B / WN4C Nominal: 1.5 / 3.0 / 3.5 
Actual: 2.01 / 3.22 / 3.76 

San Pedro - 2010 Maule (Chile) earthquake BI4-SP100 – 
April 25, 

2012 Low-amplitude white noise base excitation WN5A / WN5B / WN5C Nominal: 1.5 / 3.0 / 3.5 
Actual: 2.01 / 3.11 / 3.46 

April 26, 
2012 

ICA 50% - 2007 Pisco (Peru) earthquake BI5-ICA50 – 

Low-amplitude white noise base excitation WN6A / WN6B / WN6C Nominal: 1.5 / 3.0 / 3.5 
Actual: 2.28 / 3.29 / 3.56 

April 27, 
2012 

ICA 100% - 2007 Pisco (Peru) earthquake BI6-ICA100 – 

Low-amplitude white noise base excitation WN7A / WN7B / WN7C Nominal: 1.5 / 3.0 / 3.5 
Actual: 1.85 / 2.83 / 3.22 

ICA 140% - 2007 Pisco (Peru) earthquake BI7-ICA140 – 

Low-amplitude white noise base excitation WN8A / WN8B / WN8C Nominal: 1.5 / 3.0 / 3.5 
Actual: 1.99 / 3.28 / 3.88 

RMS = root-mean-square 
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5.4. Recorded building response 

The global response of the building, especially that of the isolators, during the 

seismic and WN tests is analyzed in this section. Most of the measurements in the 

structure and isolation system were collected using accelerometers; however, a correct 

evaluation of displacement response is of great importance in order to precisely estimate 

the shear strain, secant stiffness, and effective damping in the isolators.  

In principle, there is no difficulty in obtaining a displacement from the double 

integration of the corresponding acceleration measurements, however, in practice this is 

not the case (e.g., Boore and Bommer 2005, Boore 2005). Here, a Tukey (tapered cosine) 

window is first applied to the raw measured acceleration and then the tapered 

acceleration time history is filtered using a band-pass IIR Butterworth filter of order 4. 

The low-pass cutoff frequency is 25 Hz and the high-pass cutoff frequency is calibrated 

such that the error between the total displacement directly measured at the foundation 

level by displacement transducers (string potentiometers) and that computed by 

integration of the acceleration measurements is minimized. 

Displacement transducers were in DAQ2 and most of the accelerometers installed 

in the structure and isolation system were in DAQ1. As abovementioned, these systems 

recorded data independently, and therefore, must first be synchronized in time. 

Accelerometers from both DAQs located at the same position (S-E corner of the first 

floor) are used for this purpose. Data recorded in DAQ2 (originally sampled at 240 Hz) 

are resampled to 200 Hz; then the time lag between both DAQs is computed from the 

cross-correlation function between the acceleration time histories recorded at the S-E 
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corner of the first floor. With the systems synchronized, it is found that for the seismic 

and WN tests, high-pass cutoff frequencies of 0.04 and 0.1 Hz (for filtering the 

acceleration time histories), respectively, provide the better match between the total 

displacement of the foundation directly measured by string potentiometers and the 

corresponding displacement obtained by double integrating the acceleration time 

histories. 

Figure 5.5 shows the comparison between total displacement in E-W direction of 

the S-E corner of the first floor measured by displacement transducers and computed by 

double integrating the acceleration time histories. In all the cases shown (BI1-CNP100, 

BI7-ICA140, WN4A, and WN8C) a very good agreement is observed, validating the 

processing of the measured acceleration data to compute displacement. 

 
Figure 5.5: Total displacement in the direction of excitation of the S-E corner of the first 
floor (above isolation system) obtained from string potentiometer and by double 
integration of acceleration data: (a) BI1-CNP, (b) BI7-ICA140, (c) WN4A , (d) WN8C. 
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The relative RMS error (RRMSE) between the total foundation displacement in 

the E-W direction obtained from displacement transducers ( spd ) and that computed by 

double integrating the acceleration time histories ( acd ) are computed for all seismic and 

WN tests. To discard the low amplitude displacements at the beginning and end of the 

time histories, the RRMSEs are computed in the time interval between the 5% and 95% 

of the Arias Intensity (Arias 1970) of the input acceleration. Figure 5.6 and Table 5.2 

summarize the RRMSE for all seismic and WN tests and the peak displacements obtained 

from both measurements are also listed in Table 5.2. A very good matching between spd  

and acd  is observed for all the tests with RRMSEs lower than 30%. It is observed that the 

RRMSE decreases as the peak total displacement of the foundation increases (Figure 5.6) 

and that RRMSEs lower than 5% are attained for seismic tests. 

 

Figure 5.6: RRMSE between spd  and acd  as a function of peak displacement of the 

foundation level ( peak
acd ). 
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Table 5.2: RRMSE between total displacement in the E-W direction of the S-E corner of 
the foundation obtained from string potentiometer ( spd ) and by double integration of 
acceleration data ( acd ). 

Test 
RRMSE between 

spd   and acd   
[%] 

Peak displacement [cm] 
String potentiometer 

( peak
spd  ) 

From accelerometer 
( peak

acd ) 

WN1A / WN1B / WN1C 27.91 / 13.48 / 10.79 1.32 / 4.24 / 5.36 1.45 / 4.26 / 5.44 
BI1-CNP100 2.06 13.41 13.53 

WN2A / WN2B / WN2C 26.74 / 13.1 / 10.75 1.46 / 4.46 / 5.43 1.57 / 4.53 / 5.50 
BI2-LAC100 4.02 15.92 16.21 

WN3A / WN3B / WN3C 25.28 / 12.2 / 10.23 1.55 / 4.57 / 5.57 1.66 / 4.64 / 5.59 
BI3-LAC100 2.55 16.17 16.47 

WN4A / WN4B / WN4C 25.27 / 12.37 / 10.46 1.51 / 4.50 / 5.48 1.60 / 4.57 / 5.53 
BI4-SP100 4.70 11.83 11.90 

WN5A / WN5B / WN5C 25.02 / 12.11 / 10.32 1.55 / 4.70 / 5.70 1.65 / 4.78 / 5.76 
BI5-ICA50 4.67 9.58 9.82 

WN6A / WN6B / WN6C 27.11 / 13.49 / 11.07 1.76 / 4.58 / 5.60 1.80 / 4.71 / 5.65 
BI6-ICA100 3.18 19.56 19.80 

WN7A / WN7B / WN7C 25.65 / 13.34 / 10.28 1.75 / 4.68 / 5.52 1.84 / 4.72 / 5.55 
BI7-ICA140 3.96 30.87 31.21 

WN8A / WN8B / WN8C 19.31 / 9.79 / 8.36 2.03 / 4.75 / 5.56 2.03 / 4.67 / 5.43 

The characteristics of the accelerations recorded on the shake table platen (below 

isolators), floor 1 (above isolators), and roof of the building are shown in Figure 5.7. 

Absolute acceleration time histories and normalized floor response spectra (FRS) 

(normalized by the peak floor acceleration or PFA) are presented for seismic tests BI1-

CNP100, BI4-SP100, and BI7-ICA140 and WN tests WN1A, WN5A, and WN8A in 

Figure 5.7a and Figure 5.7b, respectively. In all cases, the effectiveness of the isolation 

system in reducing the peak accelerations in the building is clearly observed. In the case 

of the seismic tests presented here, the peak acceleration above the isolation layer is 

reduced by 2.6 (BI1-CNP100) to 5.2 (BI4-SP100) times the peak input acceleration 

achieved on the shake table platen. Peak roof accelerations are also significantly lower 
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than the peak input accelerations, with reductions varying between 2.3 (BI1-CNP100) 

and 4.3 (BI4-SP100). In the case of WN tests, the effect of the isolators in reducing the 

peak acceleration is even more significant. Reductions of 5.5 to 6.5 at the foundation 

level and of 4.0 to 6.5 at the roof level with respect to the input are observed. 

The elongation of the fundamental period of the system as well as the shear stain 

dependency of the effective stiffness of the isolators is clearly evidenced from the 

normalized FRS. In the case of seismic tests, a predominant peak is observed at a period 

larger than 2.0 sec and its location varies depending on the intensity of the excitation. In 

tests BI1-CNP100 and BI4-SP100 the peak is about 2.3 and 2.4 sec, respectively, while in 

tests BI7-ICA140 the peak is about 3.2 sec. The increase in the predominant period is due 

to the reduction in the effective horizontal stiffness of the isolation system as the shear 

strain in the bearings increases, as shown from quality tests in Figure 5.3a. In the WN 

tests shown here, the predominant peak is about 2.0 sec, which suggests a significant 

elongation of the predominant period of the building as compared to its fixed-base 

configuration (which does not take in account the foundation), which was estimated in 

0.75 sec by Astroza et al. (2015b) for the undamaged state (before to start the seismic 

tests on the fixed-based building). It is noted that in the WN tests, the peak in the 

normalized response spectra in the shake table platen (below isolators) at about 10.5 Hz 

corresponds to the oil column resonance of the shake table system. 
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Figure 5.7: Absolute acceleration time histories and normalized pseudo-acceleration FRS 
of the data recorded below isolators (platen), above isolators (floor 1), and roof level: (a) 
BI1-CNP100, BI4-SP100, and BI7-ICA140; (b) WN1A, WN5A, and WN8A. 

Figure 5.8 shows the PFA (positive and negative values) along the height of the 

building, taken as the average of the four corners on each floor of the building. PFA at 
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the foundation (Floor 1) are significantly reduced compared to the input peak 

accelerations (platen), confirming the effectiveness of the isolation system in reducing the 

acceleration demands. In the WN tests (Figure 5.8b) the reduction is more evident than in 

the seismic tests (Figure 5.8a). In all cases, the distribution of the PFA along the height of 

the building is practically constant, i.e., minor dynamic amplification due to the vibration 

of the superstructure (above isolation layer) is observed. 

 
Figure 5.8: Peak floor acceleration (PFA): (a) Seismic tests, (b) WN tests. 

Figure 5.9 presents the peak interstory drif ratio (PIDR), both positive and 

negative values, along the height of the building. The displacement time history at each 

floor of the building corresponds to the average of the four displacements time histories 

computed by double integrating the accelerations measured at the four corners of the 

building. The interstory drift ratio is then calculated as the difference of the averaged 

displacement time histories between sequential floors divided by the corresponding story 

height. In the seismic tests, the peak input displacement ranges between 82.7 mm (BI4-



www.manaraa.com

155 
 

SP100) and 129.2 mm (BI7-ICA140). However, as shown in Figure 5.9a, the PIDR is 

lower than 0.4% (or equivalently, the interstory drift is less than 17.1 mm). The low 

PIDRs and the large deformations of the isolation layer (see Figure 5.10 and Figure 5.11) 

confirm the effectiveness of the HDRBs in concentrating the lateral displacement induced 

by the seismic excitation and thus reducing the interstory drift demands. In the case of 

WN base excitation (Figure 5.9b), the PIDR is less than 0.06% (interstory drift less than 

2.6 mm), while the deformation of the isolators ranges between 10.8 mm (test WN4A) 

and 46.2 mm (test WN8C), also confirming the concentration of the lateral displacement 

in the isolators. 

 
Figure 5.9: Peak interstory drift ratio (PIDR): (a) Seismic tests, (b) WN tests. 

The hysteretic behavior of the isolators is investigated in Figure 5.10. The total 

base shear computed at the bottom of the foundation (V) normalized by the total weight 

of the building including the foundation (W) is plotted against the shear strain in the 

isolators. It is noted that the total base shear is computed as 
6

1
j j

j
V m a



   with ja =  
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average absolute floor acceleration in the E-W direction at floor j and jm  = tributary 

mass of floor j. Figure 5.10a shows the hysteretic curves for seismic tests BI1-CNP100, 

BI4-SP100 and BI-7ICA140. A nonlinear response in the isolation system is observed 

from small levels of shear deformation in the bearings. For shear strains larger than about 

100% a hardening effect in the isolators is observed, which is consistent with the results 

obtained in the quality test (Figure 5.2c). The lowest maximum shear strain in the 

isolators during seismic tests is attained during test BI1-CNP100 and reaches about 45%. 

In the WN tests, shear strain in the isolators varies between about 5% and 25% and the 

reduction in the effective stiffness as the shear strain increases is clearly observed. Even 

at very low level of shear strain (e.g., test WN5A), the isolators exhibit a nonlinear 

hysteretic response. 

 
Figure 5.10: Total base shear versus shear strain in the isolation layer: (a) Seismic tests 
BI1-CNP100, BI4-SP100, and BI7-ICA140, (b) White noise tests WN1C, WN5A, and 
WN8C. 

From the hysteretic response of one isolator (assuming that the total base shear is 

equally distributed in the four isolators), the secant stiffness of all seismic and WN test 

data is evaluated (Table 5.3) using the maximum and minimum shear strains as described 

by Equation (5.1). Figure 5.11 shows the secant stiffness versus the peak shear strain in 

the isolators for the seismic, WN, and quality tests data. From all the test data, which 
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include peak shear strain ( shearγ ) ranging from 5% to 150%, it is noted that the secant 

stiffness follows a power function in shearγ  (see Figure 5.11). 

Table 5.3: Secant stiffness of the isolators during seismic and WN shake table tests. 

Test 
Secant 

stiffness 
[kN/m] 

Test 
Secant 

stiffness 
[kN/m] 

Test 
Secant 

stiffness 
[kN/m] 

Test 
Secant 

stiffness 
[kN/m] 

WN1A 2609 WN1B 1892 WN1C 1611 BI1-CNP100 1163 
WN2A 2317 WN2B 1539 WN2C 1408 BI2-LAC100 1022 
WN3A 2286 WN3B 1516 WN3C 1392 BI3-LAC100 1056 
WN4A 2335 WN4B 1519 WN4C 1435 BI4-SP100 979 
WN5A 2284 WN5B 1499 WN5C 1344 BI5-ICA50 1010 
WN6A 2219 WN6B 1424 WN6C 1290 BI6-ICA100 863 
WN7A 2167 WN7B 1384 WN7C 1287 BI7-ICA140 875 
WN8A 1839 WN8B 1272 WN8C 1202   

 

 
Figure 5.11: Secant stiffness (keff) against shear strain (γshear) for the isolators. 

The effective damping for all the tests (seismic, WN, and quality) is also 

computed. The effective damping is a function of the energy dissipated in one cycle of 

oscillation (area enclosed by one cycle of the hysteretic behavior) and of the strain energy 

in the system at maximum displacement. For the case of seismic and WN test data, these 
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quantities are evaluated for each cycle; the effective damping ratio is then computed from 

the total energy dissipated and total strain energy. Figure 5.12 summarizes the computed 

effective damping ratio for all the tests, ranging from about 10% up to 19%. A decreasing 

trend of effξ  as shearγ  increases is observed for most cases, however, for the WN tests an 

almost constant value of about 16 – 17% is obtained in spite that the peak shear strains 

vary between 5% and 23%. It is further noted that the previously described effective 

damping represents an average value along the entire duration of the corresponding test. 

 
Figure 5.12: Effective damping ratio (ξeff) against shear strain (γshear) for one isolator. 

Estimates of the acceleration transfer function in the E-W direction are computed 

at the foundation (above isolators) and roof levels with respect to the shake table platen 

level with the WN test data. The acceleration time history at each floor is taken as the 

average of the four corners on each floor of the building. The transfer function is 

estimated from the quotient between the cross-power spectral density (CSD) between 

input x (acceleration at shake table platen) and output y (acceleration at foundation and 

roof levels), yxP , and power-spectral density (PSD) of the input, xxP , i.e., 
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CSD and PSD are estimated using the Welch’s method with a Hanning window of 

10 sec and 50% overlapping. Figure 5.13a presents the transfer function estimates for 

WN tests WN1C, WN5A, and WN8C. At the roof level, a predominant frequency of 

0.54, 0.62, and 0.44 Hz is identified for WN tests WN1C, WN5A, and WN8C, 

respectively. Very similar peaks are observed at the foundation level, indicating that this 

frequency is related to the isolation layer and it dominates the response of the entire 

system. A second peak is detected at about 2.3−2.9 Hz at both foundation and roof levels.  

Figure 5.13b shows the normalized (to a unit value) PSD, also estimated using the 

Welch’s method with a Hanning window of 10 sec and 50% overlapping, in the E-W 

direction at the roof and foundation levels of the building obtained with AV data recorded 

before seismic test BI1-CNP100 and after seismic test BI5-ICA50. Two predominant 

frequencies are clearly observed at the foundation and roof levels, the first at 1.15 Hz and 

the second at 3.58 Hz. As discussed previously for the WN test data, the presence of 

peaks in PSD of foundation and roof levels at the same frequency indicates that these 

predominant frequencies are related to the deformation of the isolation layer. While for 

the AV data recorded before BI1-CNP100 the main peak is the one at 3.58 Hz (al both 

roof and foundation levels), for the AV data recorded after BI5-ICA50 the main peak is 

the one at 1.15 Hz. As will be discussed in the next section, the frequencies at about 1.15 

Hz and 3.58 Hz correspond to the first and second longitudinal modes of the BI building 

under AV excitation, with their relative contribution to the response of the building 

depending on the characteristics of the external (ambient) excitation. 
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Figure 5.13: (a) Magnitude of the transfer function in the E-W direction at foundation 
and roof levels with respect to shake table platen for WN tests WN1C, WN5A, and 
WN8C, (b) PSD in the E-W direction at roof and foundation levels for AV data recorded 
before BI1-CNP100 and after BI5-ICA50. 

5.5. Modal identification 

5.5.1. Methods 

To estimate the modal properties of the BI building, two state-of-the-art output-

only SID methods assuming broad-band excitation are used with the continuously 

recorded AV data: the Data-Driven Stochastic Subspace Identification (SSI-DATA) 

method and the Natural Excitation Technique combined with Eigensystem Realization 

Algorithm (NExT-ERA). For the low-amplitude WN base excitation data, in addition to 
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the two above-referenced methods used with the AV data, the output-only Enhanced 

Frequency Domain Decomposition (EFDD) method and two input-output methods are 

employed. The latter include the Deterministic-Stochastic Subspace Identification (DSI) 

method and the Observer/Kalman Filter Identification combined with Eigensystem 

Realization Algorithm (OKID-ERA). A detailed explanation of these SID methods can be 

found elsewhere. In particular Van Overschee and De Moor (1996), Juang and Pappa 

(1985), Brincker et al. (2001a,b), and Juang (1994) provide detailed information about 

the SSI-DATA and DSI, NExT-ERA, EFDD, and OKID-ERA methods, respectively. 

Acceleration time histories recorded by twenty six accelerometers (two on each 

translational direction of each floor and two in the longitudinal direction at the shake 

table platen) are used to conduct the identification of the modal properties of an 

equivalent linear time invariant model of the BI building. To reduce the computational 

requirements involved in the identification process, the acceleration time histories are 

decimated to 50 Hz. In the case of methods based on state-space representation (SSI-

DATA, NExT-ERA, DSI, and OKID-ERA), stabilization diagrams are used to define the 

order of the model. For the EFDD method, the CSD functions are estimated using the 

Welch’s method with a Hanning window of length 1/8 of the total length of the signal 

and 50% overlapping. 

It is noteworthy that all the SID methods used in this chapter assume a linear 

time-invariant model with all the sources of energy dissipation (e.g., due to hysteretic 

behavior and friction) represented by a linear viscous damping. Therefore, the identified 

natural frequencies and damping ratios correspond to the modal parameters of an 

equivalent viscously-damped linear elastic model. 
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5.5.2. System identification results using ambient vibration data 

Ambient vibration data recorded in the BI configuration for about sixteen days, 

from April 14, 2012 to April 30, 2012, are used to estimate the modal properties of the BI 

building. Output-only SSI-DATA and NExT-ERA methods are used to identify natural 

frequencies, damping ratios, and mode shapes of an equivalent linear time-invariant state-

space model with all sources of energy dissipation represented by linear viscous 

damping. The identification process is performed using back-to-back, ten-minute long 

time windows of structural AV data, referred to as data sets hereafter. It is noted that 144 

data sets correspond to one day. Because the sixteen days of continuous data produce 

2400 data sets, which need to be processed to identify the dynamic characteristics of the 

BI building, an automated procedure is utilized. For this purpose, the stabilization 

diagram, which summarizes the identified modal parameters versus model order, is used 

to distinguish between physical and spurious (mathematical) modes. For the stability 

criteria, a mode is consider stable if the triple stability criterion defined in Equation (5.4)  

is satisfied eight times consecutively (as the model order is increased progressively by 

increments of two). Similar criteria have been previously used in the literature (e.g., 

Peeters and De Roeck 2001, Van der Auweraer and Peeters 2004, Hu et al. 2012). 

 ( )1% ; 5% ; 100 2%
i ji j j i j j ,f f f ξ ξ ξ 1-MACφ φ− ≤ − ≤ ≤  (5.4) 

where if , iξ  and jf , jξ  are the identified natural frequencies and damping ratios 

for models of consecutive orders i  and 2j i= + , and 
i j,MACφ φ  is the modal assurance 

criterion (Allemang and Brown 1982) of a pair of corresponding modes shapes identified 

for models of successive orders. Since the seismic tests were not equidistant in time (see 
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test protocol in Table 5.1), different numbers of data sets are available before and after 

each seismic test, as indicated in Table 5.4. 

Table 5.4: Number of data sets used in the system identification with ambient vibration 
data. 

Stage Before 
BI1 

After 
BI1 

After 
BI2 

After 
BI3 

After 
BI4 

After 
BI5 

After 
BI6 

After 
BI7 Total 

# of     
data sets 420 114 6 1176 138 120 30 396 2400 

The mode shapes identified with the methods used herein are complex-valued, 

and the corresponding real modes are computed using the method proposed by Imregun 

and Ewins (1993). Eight modes are identified using the AV data. The mode shapes 

identified using SSI-DATA with AV data recorded on April 13, 2012 between 18:00 and 

18:10 PST (first data set before seismic test BI1-CNP100) are shown in Figure 5.14. 

These modes correspond to the first three coupled transverse and torsional modes (1-

T+To, 2-T+To, and 3-T+To), first three longitudinal modes (1-L, 2-L, and 3-L), and the 

first two torsional modes (1-To and 2-To). These mode shapes are used as reference to 

compute the MAC of the corresponding mode shapes identified with each data set. 

Modes 1-T+To, 1-L, and 1-To correspond mainly to the deformation of the isolation 

system and are referred to as isolation modes, while modes 2-T+To to 3-L mostly involve 

deformation of the superstructure and are referred to as structural modes. 

Polar plots, which are used to investigate the level of non-proportional or non-

classical damping in the identified mode shapes, are presented below the corresponding 

mode shapes in Figure 5.14. Since all the vectors shown in the polar plots are almost 

collinear, it is concluded that the identified mode shapes are almost purely classically 

damped. The most likely reason is that the level of structural vibration is very low for 
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AVs and, consequently, the level of shear deformation in the isolators is small and the 

damping effect of the isolation system is minor. 

 
Figure 5.14: Mode shapes and corresponding polar plots of the BI building identified 
using SSI-DATA with AV data recorded on April 13, 2012 between 18:00 and 18:10 
PST. 

Table 5.5 summarizes the success rate of the automated modal identification 

process by showing, in percentage, the modes successfully identified according to the 

stability criteria defined in Equation (5.4) (Peeters and De Roeck 2001, Magalhães et al. 

2009). The success rate of the isolation modes is equal to or larger than 60% for both 

SSI-DATA and NExT-ERA methods. For the structural modes, the success rate varies 

significantly for different modes, with 2-To and 3-T+To being the modes with the lowest 

(33% for SSI-DATA and NExT-ERA) and highest (88% for SSI-DATA and 85% for 

NExT-ERA) success rates, respectively. It is noted that the successful identification of a 

mode depends on its degree of participation in the response of the building and the 

signal-to-noise ratio (SNR) associated to the mode. This, however, can significantly 

change based on the characteristics of the excitation (e.g., traffic conditions near the 

building, wind features, etc.). 
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Table 5.5: Success rate (%) of the automated modal identification process. 

Mode 
Success rate [%] 

SSI-DATA NExT-ERA 

1-T+To 72 70 
1-L 70 69 
1-To 62 60 

2-T+To 57 55 
2-L 52 49 
2-To 33 33 

3-T+To 88 85 
3-L 58 57 

The natural frequencies obtained from the automated identification process using 

SSI-DATA are plotted as a function of time in Figure 5.15. In this plot, vertical dashed 

lines indicate the times of the seven seismic tests conducted on the BI building. The 

natural frequencies of the isolation modes slightly decrease after each seismic test, but 

recover in time until the next seismic test (see also Figure 5.18a). Since the total mass of 

the building remained practically unchanged during the complete BI test phase, the 

decrease in the natural frequencies of the isolation modes is due to a reduction in the 

lateral (shear) stiffness of the isolators, which recovers in time while the building is not 

subjected to another seismic excitation. This temporary and recoverable stiffness 

reduction in HDRBs is known as Mullins' effect and has been previously observed in BI 

structures instrumented during earthquakes (e.g., Siringoringo and Fujino 2014). These 

modal identification results indicate that the BI building did not suffer any structural 

damage during the BI test phase, which is consistent with the visual inspections and the 

low interstory drift demands attained during the seismic tests in the BI configuration 

(peak interstory drift ratio < 0.4%). 
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Figure 5.15: Temporal evolution of the natural frequencies of the BI building identified 
using SSI-DATA with ambient vibration data. 

 
Figure 5.16: Temporal evolution of the equivalent viscous damping ratios of modes 1–
T+To, 1–L, 1–To, 2–T+To, 2–L, and 2–To of the BI building identified using SSI-DATA 
with AV data (vertical black lines indicate seismic tests). 

To analyze the overall trend of the identified modal damping ratios of the BI 

building, Figure 5.16 shows the evolution of the identified equivalent viscous damping 
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ratios for modes 1-T+To, 1-L, 1-To, 2-T+To, 2-L, and 2-To. The damping ratios of the 

isolation modes (1-T+To, 1-L, and 1-To) are on average about 5% – 6% and are higher 

than those of the structural modes 2-T+To, 2-L, and 2-To, whose averages are about 3%. 

The identified natural frequencies and damping ratios vary almost periodically 

every 144 data sets, corresponding to a 1-day cycle. Although environmental conditions 

such as wind speed and temperature were not directly measured on the building 

specimen, hourly measurements compared at different stations located a few miles away 

from the site show very little variation. The temporal evolutions of the wind speed and 

temperature measured 4.5 km. away from the NEES@UCSD shake table are plotted in 

Figure 5.17 over the time interval for which the modal identification is conducted. Such 

plot shows that, similarly to the natural frequencies and damping ratios, both 

environmental parameters vary approximately every 144 data sets and peak around 2 pm. 

 
Figure 5.17: Wind speed and temperature profiles measured 3 miles away from the test 
site over 16-day monitoring period. 

To analyze the correlation between the environmental conditions, the ambient 

vibration level of the building, and the identified modal properties, Figure 5.18 shows the 

time evolution of the RMS acceleration at the roof level (resultant in longitudinal and 

transverse directions) as well as the identified natural frequency and damping ratio of the 
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first mode (1-T+To). It is clearly observed that as the amplitude of the vibration at the 

roof level increases, the identified natural frequency decreases. In addition, although the 

variability of the identified damping ratio is large, it seems that as the amplitude of the 

vibration at the roof level increases, the identified damping ratio also increases. By 

comparing Figure 5.17 and the roof RMS acceleration profile in Figure 5.18, it is noted 

that the wind speed, temperature, and RMS acceleration at the roof level have a similar 

periodic variation and are in phase. Therefore, the effects of wind speed and temperature 

on the identified natural frequencies and damping ratios cannot be directly discriminated. 

It is also observed that the SID process does not identify the isolation modes when the 

RMS at the roof level is low. 

 

 
Figure 5.18: Time evolution of identified modal parameters of mode 1-T+To overlaid 
with roof RMS acceleration: (a) natural frequency, (b) damping ratio (vertical black lines 
indicate seismic tests). 

Table 5.6 summarizes the mean value (µ ) and coefficient of variation (CV) of the 

identified natural frequencies, damping ratios, and mode shapes considering all the data 

sets. It is noted that the mode shapes identified with the first data set (Figure 5.14) are 

used as a reference to compute the MAC values. Mean values and coefficients of 

variations obtained with SSI-DATA and NExT-ERA are very similar for all the modal 
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parameters. However, larger differences are observed for the damping ratios, which is 

consistent with previous studies that have found that damping ratio estimates may exhibit 

significantly higher method-to-method variability compared to natural frequencies 

(Ndambi et al. 2000, Astroza et al. 2015a,b). Since the seismic tests induce a reduction of 

the lateral stiffness of the isolators, CVs of natural frequencies of the isolation modes are 

higher than those of the structural modes. The mean values of damping ratios of isolation 

modes are higher than those of the structural modes. Finally, it is noted that the MAC 

values are higher than 0.9 for the first seven modes (1-T+To to 3-T+To) and they 

decrease for the highest identified mode 3-L. A larger variability in the identified modal 

parameters is expected for higher modes, because their participation in the measured 

responses is lower than that that of the lower modes; consequently, the SNR is lower for 

the higher modes. Furthermore, the variability in the identified damping ratios and mode 

shapes is expected to be more pronounced because they are more sensitive to the noise 

level. 

Table 5.6: Mean (µ) and coefficient of variation (CV) of the identified natural 
frequencies (f), damping ratios (ξ), and MAC using ambient vibration data. 

Mode 

Natural frequency Damping ratio MAC 
µ [Hz] CV [%] µ [%] CV [%] µ CV [%] 

SSI-DATA / 
NExT-ERA 

SSI-DATA / 
NExT-ERA 

SSI-DATA / 
NExT-ERA 

SSI-DATA / 
NExT-ERA 

SSI-DATA / 
NExT-ERA 

SSI-DATA / 
NExT-ERA 

1-T+To 1.13 / 1.14 6.01 / 6.61 4.94 / 4.85 35.33 / 42.72 0.90 / 0.89 9.89 / 11.9 
1-L 1.18 / 1.18 6.25 / 6.54 5.33 / 5.20 36.86 / 42.64 0.93 / 0.89 8.32 / 9.84 
1-To 1.56 / 1.56 6.32 / 6.79 5.28 / 5.27 27.75 / 40.47 0.96 / 0.93 7.30 / 12.88 

2-T+To 3.22 / 3.20 4.48 / 4.48 3.57 / 2.72 43.82 / 78.49 0.91 / 0.90 16.21 / 16.4 
2-L 3.58 / 3.58 3.79 / 4.08 2.92 / 2.75 35.79 / 49.57 0.92 / 0.92 17.39 / 15.35 
2-To 4.86 / 4.87 2.33 / 2.29 2.37 / 1.97 60.54 / 56.53 0.97 / 0.95 9.32 / 11.30 

3-T+To 7.80 / 7.80 1.20 / 1.32 1.85 / 1.74 53.09 / 60.03 0.92 / 0.92 9.18 / 8.60 
3-L 8.16 / 8.16 1.56 / 1.78 1.76 / 1.79 36.11 / 52.8 0.82 / 0.79 16.26 / 20.15 
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5.5.3. System identification results using white noise base excitation data 

Using the vibration response data of the BI building recorded during the twenty-

four WN tests (WN1A to WN8C), ten modes are identified. They correspond to the first 

four longitudinal (1-L, 2-L, 3-L, and 4-L), first three coupled longitudinal-transverse (1-

L+T, 2-L+T, and 3-L+T), and first three coupled longitudinal-torsional (1-L+To, 2-

L+To, and 3-L+To) modes. The mode shapes identified using DSI with WN1A test data 

and their corresponding polar plots are shown in Figure 5.19. The mode shapes of the 

structural modes (2-L to 4-L) are close to purely classically damped, while the isolation 

modes exhibit a higher degree of non-proportional damping. Since the isolation modes 

include large deformations of the isolators as well as a large damping ratio due to the 

energy dissipation characteristics of the rubber, the structure itself and the isolation layer 

have levels of damping significantly different then non-classical damping is anticipated. 

It is noted that the mode shapes identified using WN test data are similar to those 

identified using AV data. However, large excitation amplitudes during WN tests induce a 

reduction in the lateral effective stiffness of the isolation layer, especially in the 

longitudinal direction (direction of motion). Therefore, the modes identified using WN 

test data always contain a component in the longitudinal direction of the building. 

It is also noted that the level of shear deformation induced by the WN base 

excitations in the isolation system is much larger than that induced by the AVs. Hence, 

the effective damping ratio in the isolators is expected to be much larger than the 

damping in the structure during the WN tests. This explains why a higher degree of non-

proportional damping is observed with the WN test data compared to the AV data. 
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Figure 5.19: Mode shapes and corresponding polar plots of the base-isolated building 
identified using DSI with WN1A test data. 

Natural frequencies, damping ratios, and mode shapes are identified using three 

output-only (SSI-DATA, NExT-ERA, and EFDD) plus two input-output (DSI and 

OKID-ERA) SID methods with vibration data recorded during the WN base excitation 

tests at different stages of the test protocol (see Table 5.1). Figure 5.20 shows the natural 

frequencies identified using data of tests WN1A, WN1C, WN5A, WN5C, WN8A, and 

WN8C, i.e., before test BI1-CNP100 and after tests BI4-SP100 and BI7-ICA140, with 

nominal amplitudes of 1.5%g and 3.5%g RMS. The natural frequencies identified for 

each data set using different SID methods are in good agreement with relative differences 

lower than 10%. Usually, differences between natural frequencies identified using 

different methods are larger for isolation modes than for structural modes. Since isolation 

modes have a non-negligible degree of nonlinearity due to the deformation of the 

isolation systems and the corresponding hysteretic behavior (see Figure 5.10b), modal 

properties of the equivalent linear system are expected to vary between different 

methods. Based on the results, the OKID-ERA method is less robust in the identification 

of poorly exited modes with transverse and torsional components, e.g., this method is not 

able to identify mode 3-L+To for any of the tests. 
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Figure 5.20: Natural frequencies identified using WN base excitation data with nominal 
RMS = 1.5% and 3.5%g recorded before BI1-CNP100 (WN1A and WN1C), after BI4-
SP100 (WN5A and WN5C), and after BI7-ICA140 (WN8A and WN8C). 

Identified natural frequencies of the isolation modes (1-L, 1-L+T, and 1-L+To) 

vary significantly for different WN tests. For example, the natural frequency of mode 1-L 

(averaged over all SID methods) varies between 0.44 Hz (test WN8C) and 0.71 Hz (test 

WN1A). Variations of about 60% for mode 1-L and 30% for modes 1-L+T and 1-L-To 

are also observed. Oppositely, natural frequencies identified for structural modes do not 

change much between different WN tests, with differences lower than 15%. This suggests 

that the natural frequencies of the isolation modes change due to variations in the 

stiffness of the isolation layer, while natural frequencies of structural modes remain 

practically unchanged since the structure itself exhibits essentially a linear elastic 

response during all the WN tests. 
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From the reduction of the natural frequencies as the amplitude of the excitation 

increases from AV to WN tests, a reduction of the effective stiffness of the isolation layer 

is clearly observed. For example, the identified natural frequency of mode 1-L with AV 

data is about 1.18 Hz, while it varies between 0.71 Hz and 0.44 Hz (depending on the 

amplitude of the WN base excitation) using WN test data. It is noteworthy that the 

reduction in the identified natural frequencies, from AV to WN tests, decreases for 

structural modes since the deformation of the isolation layer is smaller in those modes 

and the structure itself experienced a basically linear elastic response during the WN 

tests. 

To analyze the effect of the excitation amplitude in the identified natural 

frequency of the fundamental mode 1-L, Figure 5.21 plots its variation as a function of 

the secant stiffness in the isolators (see Table 5.3). From such plot it is clearly observed 

that, as the amplitude of the WN base excitation increases, a higher deformation in the 

bearings is induced as the effective (secant) stiffness of the isolation layer decreases. 

Since the isolation modes mostly comprise deformation of the isolators, a reduction of the 

effective stiffness of the isolation layer implies a reduction in the frequency of those 

modes. This effect is clearly observed in Figure 5.21, where a linear correlation between 

the natural frequency of mode 1-L and that of the secant stiffness in an isolator is 

detected, with a coefficient of determination R2 = 0.94. 
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Figure 5.21: Identified frequency of mode 1-L versus secant stiffness of isolator for all 
WN tests. 

The damping ratios of the ten identified modes are shown in Figure 5.22. While 

the damping ratios of the isolation modes are high, with values ranging between 7% and 

15%, the damping ratios of the structural modes are significantly lower, with values 

between 1% and 5%. It is also noted that damping ratios identified for higher modes 3-

L+To and 4-L are particularly low. As previously mentioned, a large deformation is 

concentrated in the isolation layer for the isolation modes, which in turn, causes 

hysteretic response of the bearings (see Figure 5.10b). This energy dissipated by 

hysteretic response of the isolators is identified as equivalent viscous damping because of 

the underlying mathematical model assumed in the SID methods used in this chapter. 
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Figure 5.22: Damping ratios identified using WN base excitation data with nominal 
RMS = 1.5% and 3.5%g recorded before BI1-CNP100 (WN1A and WN1C), after BI4-
SP100 (WN5A and WN5C), and after BI7-ICA140 (WN8A and WN8C). 

For a given data set, the identified damping ratios show a method-to-method 

variability higher than those of the identified natural frequencies, which is consistent with 

previous studies (e.g., Ndambi et al. 2000, Astroza et al. 2015a,b). The damping ratios 

identified using WN test data are consistently higher than those estimated using AV data 

(see Table 5.6) for both isolation and structural modes. In contrast, identified damping 

ratios of the isolation modes do not change significantly for different WN tests and, for a 

given mode, their values are almost constant for different WN tests. As discussed in 

Section 5.4, the effective damping ratio ( effξ ) computed from the hysteretic response of 

the isolators during the WN tests is about 16 – 17% for all the WN tests (Figure 5.12). 

This effective damping ratio is similar to the damping ratios identified for mode 1-L (
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1 L−ξ  ) using the different SID methods with the WN test data (Figure 5.22). This suggests 

that most of the energy dissipated in the BI building is through hysteretic behavior of the 

isolators, which is identified as equivalent viscous damping because of the underlying 

mathematical model used for SID. Figure 5.23 shows the correlation between effξ  and 

the damping ratio of mode 1-L ( 1 L−ξ ) identified using the five SID methods. It is 

observed that values for 1 L−ξ  can be larger or lower than effξ , and no trend (e.g., as a 

function of amplitude of the excitation) is observed. On average, values identified of 1 L−ξ  

are lower than effξ . 

 

Figure 5.23: Correlation between effξ  and the damping ratio of mode 1-L ( 1 L−ξ ) 
obtained using SID methods. 

Table 5.7 presents the identified natural frequencies and damping ratios of the BI 

building using the recorded data of the twenty four WN base excitation tests. The results 
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obtained using the five different SID methods are summarized with the mean values and 

coefficients of variation also presented. Similar observations to those discussed above 

based on Figure 5.20 and Figure 5.22 can be drawn. 

Table 5.7: Natural frequencies and damping ratios of the base-isolated building identified 
using low-amplitude WN base excitation data. 

  Natural frequency (Hz)  Damping ratio (%) 

 Mode SSI NExT EFDD DSI OKID Mean CV (%)  SSI NExT EFDD DSI OKID Mean CV (%) 

W
N

1A
 

1-L 0.68 0.73 0.74 0.70 0.69 0.71 3.66  16.48 17.62 11.33 14.03 16.06 15.10 16.40 
1-L+T 0.87 0.87 0.84 0.85 0.91 0.87 3.09  9.09 12.56 12.61 7.07 10.38 10.34 22.85 
1-L+To 1.14 1.12 1.09 1.12 − 1.12 1.84  9.88 8.18 7.07 8.47 − 8.40 13.77 
2-L 2.50 2.51 2.51 2.63 2.54 2.54 2.09  2.01 3.34 2.07 3.43 3.83 2.94 28.60 
2-L+T 2.93 2.92 2.93 2.95 2.91 2.93 0.51  3.73 3.41 5.16 3.11 2.32 3.55 29.44 
2-L+To 4.22 4.22 4.19 4.17 3.94 4.15 2.86  3.62 2.58 2.68 4.20 1.28 2.87 38.86 
3-L+T 6.91 6.89 7.09 6.87 7.01 6.95 1.32  2.41 1.39 1.58 1.40 0.62 1.48 43.13 
3-L 8.51 8.40 8.42 8.64 8.59 8.51 1.22  3.34 4.63 1.31 1.42 0.99 2.34 67.49 
3-L+To 9.40 9.63 9.59 9.54 − 9.54 1.06  0.20 0.67 0.98 1.23 − 0.77 57.61 
4-L 11.91 11.58 11.90 11.96 11.49 11.77 1.83  1.21 0.86 0.40 0.56 0.32 0.67 54.60 

                 

W
N

1B
 

1-L 0.55 0.57 0.53 0.52 0.53 0.54 3.70  10.22 13.63 16.28 19.88 14.48 14.90 23.83 
1-L+T 0.79 0.74 0.73 0.74 0.73 0.75 3.36  14.00 14.21 10.76 12.66 14.42 13.21 11.60 
1-L+To 1.08 1.13 1.09 1.08 1.08 1.09 1.99  9.92 9.84 8.08 8.99 7.96 8.96 10.42 
2-L 2.39 2.39 2.39 2.26 2.38 2.36 2.43  1.90 2.02 2.13 2.44 2.47 2.19 11.56 
2-L+T 2.63 2.60 2.71 2.76 2.83 2.71 3.47  2.29 2.53 4.18 3.84 3.06 3.18 25.68 
2-L+To 4.03 4.11 4.07 4.03 3.95 4.04 1.47  5.97 4.42 1.71 3.05 1.60 3.35 55.51 
3-L+T 6.78 6.98 7.05 6.86 7.07 6.95 1.79  2.38 1.30 0.81 1.17 0.48 1.23 58.66 
3-L 8.58 8.68 8.45 8.60 8.66 8.59 1.04  3.10 1.38 0.59 1.44 1.80 1.66 55.10 
3-L+To 9.55 9.62 9.34 9.46 − 9.49 1.25  1.28 1.65 0.91 0.61 − 1.11 40.56 
4-L 11.68 11.38 11.37 11.40 11.74 11.51 1.57  2.03 0.67 0.62 0.78 0.90 1.00 58.66 

                 

W
N

1C
 

1-L 0.52 0.50 0.52 0.49 0.47 0.50 4.24  12.52 15.37 9.13 15.66 12.64 13.06 20.26 
1-L+T 0.68 0.67 0.68 0.71 0.66 0.68 2.75  7.53 7.16 6.22 7.99 6.39 7.06 10.63 
1-L+To 1.05 0.95 1.08 1.03 1.07 1.04 5.00  16.91 19.46 11.80 12.85 9.28 14.06 29.05 
2-L 2.46 2.39 2.45 2.43 2.48 2.44 1.40  5.14 4.89 4.87 3.87 1.16 3.99 41.47 
2-L+T 2.71 2.70 2.75 2.69 2.80 2.73 1.67  3.74 2.91 3.77 2.93 1.97 3.06 24.19 
2-L+To 4.00 3.99 3.97 3.99 4.00 3.99 0.33  5.65 2.47 3.08 3.66 1.31 3.23 49.70 
3-L+T 6.83 6.72 7.05 7.06 7.23 6.98 2.90  3.08 1.96 1.64 2.06 2.63 2.27 25.32 
3-L 8.51 8.27 8.28 8.36 8.24 8.33 1.31  4.22 3.31 3.90 2.51 2.14 3.22 27.55 
3-L+To 9.54 9.23 9.74 9.79 − 9.58 2.66  0.59 3.14 2.32 1.49 − 1.89 58.09 
4-L 11.41 11.42 11.52 11.44 11.59 11.48 0.68  3.22 3.80 2.29 1.13 1.06 2.30 53.25  

                

W
N

2A
 

1-L 0.60 0.61 0.62 0.60 0.59 0.60 1.89  14.57 21.00 11.32 25.29 24.11 19.26 31.58 
1-L+T 0.86 0.87 0.84 0.87 0.87 0.86 1.51  6.69 8.53 9.46 7.16 6.24 7.62 17.62 
1-L+To 1.24 1.08 1.09 1.12 1.11 1.13 5.72  7.83 8.14 6.67 7.13 6.43 7.24 10.13 
2-L 2.59 2.49 2.51 2.57 2.54 2.54 1.63  3.85 2.09 2.24 4.08 2.90 3.03 29.93 
2-L+T 2.97 2.90 2.93 2.98 3.05 2.97 1.92  4.50 2.81 2.83 3.42 2.14 3.14 28.17 
2-L+To 4.17 3.97 4.06 4.17 4.10 4.09 2.05  3.73 1.49 1.19 3.23 1.23 2.17 55.74 
3-L+T 6.84 6.67 6.94 6.84 6.77 6.81 1.46  2.51 4.05 2.36 2.35 2.47 2.75 26.62 
3-L 8.36 8.33 8.42 8.40 − 8.38 0.47  2.13 3.74 3.02 2.63 − 2.88 23.59 
3-L+To 9.70 9.77 9.98 9.54 − 9.75 1.87  0.54 0.45 0.96 1.04 − 0.75 39.50 
4-L 11.69 11.65 11.58 11.52 11.67 11.62 0.60  0.50 1.87 2.99 1.03 0.33 1.34 81.76 
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Table 5.7: Natural frequencies and damping ratios of the base-isolated building identified 
using low-amplitude WN base excitation data, continued. 

  Natural frequency (Hz)  Damping ratio (%) 

 Mode SSI NExT EFDD DSI OKID Mean CV (%)  SSI NExT EFDD DSI OKID Mean CV (%) 
W

N
2B

 

1-L 0.51 0.46 0.53 0.48 0.53 0.50 6.20  20.73 14.94 11.75 18.95 15.68 16.41 21.44 
1-L+T 0.77 0.72 0.67 0.74 0.72 0.72 5.04  14.39 14.11 11.72 9.07 10.36 11.93 19.43 
1-L+To 0.99 1.08 1.08 0.98 − 1.03 5.33  10.94 12.66 11.68 6.43 − 10.43 26.44 
2-L 2.44 2.38 2.41 2.34 2.34 2.38 1.85  4.87 3.79 5.07 3.39 2.35 3.89 28.68 
2-L+T 2.93 2.93 2.71 2.69 − 2.82 4.73  3.03 4.14 3.77 2.41 − 3.34 23.13 
2-L+To 3.95 4.11 4.03 4.02 4.09 4.04 1.56  6.07 5.23 3.04 2.94 1.42 3.74 50.33 
3-L+T 6.75 6.78 6.94 6.92 7.10 6.90 2.04  2.90 2.48 1.61 2.26 3.42 2.53 26.85 
3-L 8.46 8.43 8.42 8.6 8.39 8.46 0.98  0.78 3.75 2.26 1.78 2.38 2.19 49.15 
3-L+To 9.63 9.76 9.59 9.71 − 9.67 0.78  1.27 3.17 2.25 3.09 − 2.44 36.28 
4-L 11.48 11.39 11.67 11.86 11.62 11.60 1.56  3.82 2.65 2.73 3.35 1.30 2.77 34.32  

                

W
N

2C
 

1-L 0.50 0.47 0.49 0.45 0.43 0.47 6.12  17.69 15.74 12.41 19.29 16.10 16.25 15.80 
1-L+T 0.74 0.69 0.67 0.71 − 0.70 4.25  7.49 8.47 9.39 8.70 − 8.51 9.26 
1-L+To 0.85 0.89 0.84 0.84 0.89 0.86 3.00  7.65 6.45 6.93 6.71 4.90 6.53 15.53 
2-L 2.38 2.42 2.40 2.33 2.41 2.39 1.49  1.41 2.37 2.54 2.27 2.43 2.20 20.61 
2-L+T 2.93 2.84 2.71 2.65 − 2.78 4.54  4.20 4.90 4.24 2.95 − 4.07 19.99 
2-L+To 3.92 3.84 3.90 3.91 − 3.89 0.92  5.89 6.96 3.29 4.23 − 5.09 32.27 
3-L+T 6.68 6.70 6.92 6.71 6.78 6.76 1.46  2.72 1.85 2.01 1.45 0.52 1.71 47.27 
3-L 8.31 8.22 8.17 8.28 8.40 8.28 1.08  1.55 3.86 2.02 2.61 3.29 2.67 35.02 
3-L+To 9.64 9.57 9.66 9.33 − 9.55 1.58  1.56 0.19 1.32 0.67 − 0.68 68.58 
4-L 11.23 11.21 11.26 11.39 11.57 11.33 1.33  1.16 0.95 1.18 0.52 0.52 0.87 37.86  

                

W
N

3A
 

1-L 0.59 0.58 0.62 0.66 0.58 0.61 5.67  14.09 13.02 11.74 15.70 13.39 13.59 10.72 
1-L+T 0.87 0.86 0.81 0.87 0.83 0.85 3.16  9.37 8.64 6.06 11.44 15.72 10.25 35.28 
1-L+To 1.09 1.06 1.09 1.12 1.07 1.09 2.12  9.60 8.97 6.06 8.95 7.45 8.21 17.50 
2-L 2.52 2.47 2.51 2.45 2.48 2.49 1.15  3.10 1.98 2.04 3.26 2.78 2.63 22.53 
2-L+T 2.92 2.91 2.93 2.95 3.02 2.95 1.49  2.23 2.64 2.97 2.52 1.93 2.46 16.14 
2-L+To 4.13 3.91 4.03 3.99 − 4.01 2.28  4.64 1.58 3.29 3.36 − 3.22 39.03 
3-L+T 6.86 6.93 7.14 7.18 6.97 7.02 1.97  3.55 3.09 1.65 1.89 1.72 2.38 36.84 
3-L 8.37 8.35 8.42 8.37 8.48 8.40 0.62  2.87 3.34 2.83 1.65 2.18 2.57 25.69 
3-L+To 10.15 10.67 10.45 10.73 − 10.50 2.50  0.58 1.53 0.69 1.29 − 1.02 44.93 
4-L 11.89 11.90 11.81 12.01 11.76 11.87 0.80  1.39 0.78 1.76 1.07 1.00 1.20 31.75  

                

W
N

3B
 

1-L 0.48 0.47 0.51 0.48 0.49 0.49 3.12  12.98 10.34 12.21 21.91 19.03 15.29 32.22 
1-L+T 0.79 0.80 0.78 0.81 − 0.80 1.62  9.99 13.70 12.81 10.78 − 11.82 14.60 
1-L+To 1.04 1.07 1.08 1.02 1.10 1.06 3.01  9.42 11.08 6.67 9.97 6.80 8.79 22.39 
2-L 2.47 2.34 2.40 2.41 2.40 2.40 1.92  4.72 2.98 4.21 3.35 3.88 3.83 17.96 
2-L+T 2.65 2.76 2.75 2.66 2.68 2.70 1.93  1.90 4.11 3.15 2.39 2.67 2.84 29.55 
2-L+To 3.98 3.95 3.95 3.94 3.78 3.92 2.03  2.47 1.78 3.57 4.18 3.93 3.19 32.08 
3-L+T 6.75 6.84 6.92 6.76 6.77 6.81 1.03  3.28 1.90 1.80 1.15 1.89 2.00 38.85 
3-L 8.24 8.35 8.42 8.53 8.46 8.40 1.32  2.42 4.03 2.05 1.51 1.72 2.35 42.75 
3-L+To 9.61 9.61 9.81 9.77 − 9.70 1.08  0.35 0.35 1.46 1.28 − 0.86 68.97 
4-L 11.47 11.19 11.35 11.41 11.43 11.37 0.97  3.32 2.30 2.90 2.47 1.53 2.50 26.89  

                

W
N

3C
 

1-L 0.49 0.46 0.49 0.47 0.50 0.48 3.41  16.48 11.76 13.71 18.49 15.22 15.13 17.01 
1-L+T 0.72 0.82 0.74 0.78 − 0.77 5.80  17.16 16.74 13.73 15.56 − 15.80 9.72 
1-L+To 0.87 0.85 0.84 0.87 0.82 0.85 2.50  7.48 6.65 9.63 8.52 8.44 8.14 13.87 
2-L 2.46 2.47 2.45 2.42 2.40 2.44 1.19  8.67 7.21 5.65 3.92 3.40 5.77 38.30 
2-L+T 2.68 2.68 2.71 2.74 2.73 2.71 1.02  2.64 3.29 3.27 2.21 3.25 2.93 16.62 
2-L+To 4.03 3.97 4.00 3.94 − 3.99 0.99  5.90 1.88 2.45 4.08 − 3.58 50.50 
3-L+T 6.70 6.77 6.92 6.72 − 6.78 1.43  2.98 0.48 1.90 1.65 − 1.75 58.53 
3-L 8.28 8.25 8.42 8.26 − 8.30 0.94  2.75 0.18 1.62 1.14 − 1.42 75.08 
3-L+To 9.49 9.39 9.59 9.66 − 9.53 1.24  0.38 1.47 2.22 0.60 − 1.17 72.31 
4-L 11.60 11.67 11.88 11.74 11.55 11.69 1.10  3.38 3.68 2.35 3.12 2.86 3.08 16.51 
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Table 5.7: Natural frequencies and damping ratios of the base-isolated building identified 
using low-amplitude WN base excitation data, continued. 

  Natural frequency (Hz)  Damping ratio (%) 

 Mode SSI NExT EFDD DSI OKID Mean CV (%)  SSI NExT EFDD DSI OKID Mean CV (%) 
W

N
4A

 

1-L 0.64 0.64 0.62 0.66 0.65 0.64 2.31  16.53 14.30 11.78 11.31 12.40 13.26 16.21 
1-L+T 0.76 0.85 0.78 0.78 0.82 0.80 4.55  9.61 7.74 9.76 8.90 9.47 9.10 9.07 
1-L+To 1.07 1.04 1.01 1.11 1.01 1.05 4.07  8.96 10.20 9.92 9.20 8.27 9.31 8.29 
2-L 2.45 2.36 2.42 2.34 2.35 2.38 2.00  1.12 2.80 1.95 2.55 2.65 2.21 31.22 
2-L+T 2.78 2.83 2.89 2.92 3.01 2.89 3.05  2.21 3.37 2.97 3.08 2.47 2.82 16.71 
2-L+To 4.11 4.09 4.11 4.09 − 4.10 0.27  1.83 3.67 1.69 4.65 − 2.96 48.79 
3-L+T 6.80 6.76 6.98 6.92 6.99 6.89 1.53  1.32 1.33 1.67 1.52 0.82 1.33 24.09 
3-L 8.45 8.49 8.42 8.41 8.39 8.43 0.46  2.80 3.48 2.06 2.67 2.39 2.68 19.82 
3-L+To 10.49 10.55 10.44 10.41 − 10.47 0.58  0.67 0.18 0.61 0.84 − 0.58 48.80 
4-L 11.98 11.59 11.58 11.62 11.86 11.73 1.56  1.48 3.29 2.13 1.32 1.40 1.92 43.05 

                 

W
N

4B
 

1-L 0.52 0.49 0.53 0.52 0.53 0.52 3.17  18.09 11.02 11.13 15.25 14.78 14.05 21.35 
1-L+T 0.78 0.81 0.73 0.73 0.72 0.75 5.19  7.05 12.52 11.16 8.69 8.87 9.66 22.44 
1-L+To 1.08 1.08 1.08 1.06 − 1.08 0.93  9.52 9.50 11.11 10.36 − 10.12 7.61 
2-L 2.36 2.46 2.40 2.23 2.27 2.34 4.00  3.20 4.54 3.37 2.71 1.19 3.00 40.49 
2-L+T 2.64 2.74 2.71 2.75 − 2.71 1.83  1.22 2.65 2.12 2.07 − 2.02 29.35 
2-L+To 3.89 3.89 3.91 3.81 − 3.87 1.12  5.05 0.82 3.13 2.50 − 2.87 60.78 
3-L+T 6.61 6.89 6.94 6.84 6.88 6.83 1.89  4.58 3.59 3.00 2.02 2.37 3.11 32.68 
3-L 8.58 8.46 8.42 8.38 8.54 8.48 0.99  3.06 3.50 2.63 1.73 1.44 2.47 35.28 
3-L+To 10.31 10.29 10.27 10.44 − 10.33 0.74  0.29 0.46 1.47 1.08 − 0.82 66.28 
4-L 11.39 11.67 11.40 11.27 11.40 11.43 1.29  2.11 1.59 2.04 1.64 0.73 1.62 33.89 

                 

W
N

4C
 

1-L 0.50 0.46 0.49 0.44 0.44 0.47 5.99  16.16 13.49 13.73 17.10 11.87 14.47 14.69 
1-L+T 0.80 0.81 0.78 0.77 − 0.79 2.31  7.35 9.40 9.62 10.09 − 9.12 13.29 
1-L+To 0.87 0.88 0.87 0.89 − 0.88 1.09  8.13 8.01 8.58 7.97 − 8.17 3.43 
2-L 2.43 2.40 2.41 2.45 2.41 2.42 0.82  5.43 6.15 4.70 4.06 5.13 5.09 15.37 
2-L+T 2.67 2.64 2.71 2.66 − 2.67 1.10  2.82 4.37 3.30 1.80 − 3.07 34.74 
2-L+To 3.87 3.89 3.90 3.87 3.79 3.86 1.12  5.70 4.78 3.60 3.33 3.84 4.25 22.99 
3-L+T 6.56 6.71 6.69 6.79 6.67 6.68 1.24  3.18 1.98 1.92 1.31 1.23 1.92 40.59 
3-L 8.33 8.36 8.42 8.35 8.33 8.36 0.43  3.31 3.16 1.96 3.98 3.69 3.22 24.06 
3-L+To 10.04 10.05 10.21 10.23 − 10.13 1.00  0.72 0.24 1.03 2.02 − 1.00 75.09 
4-L 11.55 11.31 11.35 11.44 11.44 11.42 0.82  0.64 2.04 1.98 0.90 0.69 1.25 56.08 

                 

W
N

5A
 

1-L 0.62 0.63 0.62 0.60 0.60 0.61 2.19  15.80 16.72 11.40 12.80 15.44 14.43 15.49 
1-L+T 0.74 0.83 0.74 0.74 − 0.76 5.90  9.15 8.66 9.68 9.74 − 9.31 5.44 
1-L+To 1.08 1.09 1.01 1.07 1.08 1.07 3.01  12.04 9.80 13.10 11.36 10.41 11.34 11.53 
2-L 2.50 2.47 2.50 2.50 2.51 2.50 0.62  3.86 4.22 3.91 3.25 4.32 3.91 10.71 
2-L+T 2.80 2.92 2.90 2.89 2.93 2.89 1.79  2.50 3.35 2.66 3.37 2.60 2.90 14.74 
2-L+To 4.08 4.04 4.03 4.03 4.20 4.08 1.76  5.38 2.59 1.29 4.19 2.82 3.25 48.35 
3-L+T 6.79 6.96 7.05 6.68 6.85 6.87 2.10  3.62 4.80 2.45 4.75 3.15 3.75 27.18 
3-L 8.32 8.38 8.42 8.36 8.44 8.38 0.56  2.81 3.14 1.77 1.88 1.90 2.30 27.37 
3-L+To 10.42 10.45 10.49 10.58 − 10.49 0.66  0.50 0.51 0.69 0.66 − 0.59 16.67 
4-L 11.50 11.25 11.44 11.53 11.60 11.46 1.16  0.50 1.12 1.42 0.76 0.59 0.88 43.69 

                 

W
N

5B
 

1-L 0.49 0.46 0.53 0.48 0.52 0.50 5.81  19.52 11.85 12.01 15.23 12.28 14.18 23.22 
1-L+T 0.82 0.82 0.73 0.82 0.76 0.79 5.37  10.45 13.60 12.60 11.82 14.70 12.63 12.91 
1-L+To 1.21 1.06 1.08 1.17 1.08 1.12 5.89  8.69 8.29 6.59 7.13 7.49 7.64 11.17 
2-L 2.40 2.45 2.41 2.55 2.41 2.44 2.54  6.40 5.20 5.16 4.21 4.57 5.11 16.31 
2-L+T 2.66 2.67 2.71 2.66 − 2.68 0.89  1.52 2.54 3.31 2.61 − 2.50 29.55 
2-L+To 4.03 4.14 4.06 3.95 4.07 4.05 1.71  4.53 4.09 3.88 1.77 1.27 3.11 47.59 
3-L+T 6.69 6.77 6.92 6.94 7.04 6.87 2.04  2.74 3.23 2.56 1.83 1.73 2.42 26.17 
3-L 8.40 8.60 8.42 8.39 8.52 8.47 1.08  1.87 3.03 2.02 2.16 2.49 2.31 19.97 
3-L+To 10.49 10.64 10.44 10.20 − 10.44 1.75  1.33 1.07 1.52 0.89 − 1.20 23.11 
4-L 11.32 11.61 11.31 11.60 11.50 11.47 1.28  1.49 2.66 2.85 3.80 2.54 2.67 30.90 
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Table 5.7: Natural frequencies and damping ratios of the base-isolated building identified 
using low-amplitude WN base excitation data, continued. 

  Natural frequency (Hz)  Damping ratio (%) 

 Mode SSI NExT EFDD DSI OKID Mean CV (%)  SSI NExT EFDD DSI OKID Mean CV (%) 
W

N
5C

 

1-L 0.50 0.46 0.49 0.46 0.45 0.47 4.59  19.94 12.12 13.78 19.92 14.12 15.98 23.08 
1-L+T 0.76 0.72 0.67 0.68 0.69 0.70 5.18  10.86 8.30 10.76 9.74 7.94 9.52 14.27 
1-L+To 0.98 1.13 1.08 1.00 − 1.05 6.68  19.47 15.71 9.97 16.79 − 15.48 25.84 
2-L 2.38 2.41 2.41 2.38 2.38 2.39 0.70  1.25 3.47 3.07 3.28 3.43 2.90 32.26 
2-L+T 2.67 2.73 2.71 2.72 2.68 2.70 0.96  4.19 4.95 4.65 2.10 2.47 3.67 35.45 
2-L+To 3.92 3.90 3.90 3.94 3.96 3.92 0.66  3.03 2.15 4.46 3.29 2.88 3.16 26.56 
3-L+T 6.68 6.77 6.91 6.58 6.86 6.76 1.97  2.50 1.80 1.83 2.68 2.09 2.18 18.17 
3-L 8.28 8.29 8.34 8.31 8.32 8.31 0.30  0.58 0.87 1.80 1.99 1.08 1.26 48.01 
3-L+To 10.29 10.36 10.33 10.26 − 10.31 0.43  0.90 1.24 1.91 0.39 − 1.11 57.38 
4-L 11.34 11.18 11.08 11.03 11.38 11.20 1.38  0.28 2.41 1.80 0.31 0.55 1.07 91.10 

                 

W
N

6A
 

1-L 0.58 0.52 0.53 0.55 0.60 0.56 6.05  16.32 16.67 12.14 17.09 17.68 15.98 13.80 
1-L+T 0.89 0.81 0.81 0.85 − 0.84 4.56  10.73 10.40 1.08 7.71 − 7.48 59.84 
1-L+To 1.02 1.02 0.98 0.97 1.09 1.02 4.65  10.98 9.96 13.61 10.37 10.05 10.99 13.79 
2-L 2.44 2.43 2.41 2.42 2.43 2.43 0.46  3.46 1.46 2.89 2.51 3.40 2.74 29.76 
2-L+T 2.76 2.80 2.93 2.96 2.87 2.86 2.95  2.03 3.13 3.19 2.78 1.17 2.46 34.81 
2-L+To 3.97 3.96 3.95 4.01 4.03 3.98 0.87  2.40 2.02 2.58 2.43 1.51 2.19 19.73 
3-L+T 6.80 6.91 7.07 6.80 6.86 6.89 1.64  4.00 2.24 2.12 2.58 1.97 2.58 31.89 
3-L 8.33 8.31 8.35 8.31 8.38 8.34 0.36  3.34 4.40 2.50 1.45 2.88 2.91 37.24 
3-L+To 10.50 10.44 10.51 10.61 − 10.52 0.67  1.02 1.77 0.68 2.23 − 1.43 49.29 
4-L 11.30 11.29 11.46 11.63 11.92 11.52 2.28  1.54 1.55 2.36 0.56 0.63 1.33 56.38 

                 

W
N

6B
 

1-L 0.47 0.44 0.50 0.47 0.49 0.47 4.86  17.15 14.45 10.64 17.20 18.96 15.68 20.70 
1-L+T 0.77 0.83 0.83 0.82 0.84 0.82 3.39  11.65 13.20 10.71 9.59 8.53 10.74 16.84 
1-L+To 1.08 1.17 1.08 1.00 1.15 1.10 6.14  10.71 18.06 15.62 8.31 2.94 11.13 53.80 
2-L 2.41 2.43 2.41 2.43 2.42 2.42 0.40  3.32 2.51 2.76 1.56 1.86 2.40 29.34 
2-L+T 2.68 2.74 2.75 2.63 − 2.70 2.10  3.35 3.97 3.45 1.95  3.18 27.17 
2-L+To 3.81 4.09 4.02 3.83 3.79 3.91 3.52  2.35 2.61 3.05 3.72 2.49 2.84 19.52 
3-L+T 7.00 6.90 7.05 7.07 7.16 7.04 1.36  2.51 2.75 2.61 1.71 1.16 2.15 31.85 
3-L 8.37 8.64 8.29 8.33 8.41 8.41 1.62  3.34 1.05 2.42 0.58 2.82 2.04 57.71 
3-L+To 10.43 10.40 10.41 10.66 − 10.47 1.19  2.49 2.48 1.97 1.45 − 2.10 23.63 
4-L 11.33 11.40 11.44 11.56 11.69 11.48 1.24  2.74 1.40 1.85 0.60 1.17 1.55 51.70 

                 

W
N

6C
 

1-L 0.51 0.48 0.49 0.44 0.43 0.47 7.22  12.52 14.87 13.44 11.51 8.43 12.15 19.92 
1-L+T 0.78 0.78 0.77 0.72 − 0.76 3.77  6.79 6.15 7.82 6.11 − 6.72 11.90 
1-L+To 0.86 0.87 0.87 0.82 − 0.86 2.78  14.02 15.25 15.84 21.03 − 16.54 18.69 
2-L 2.39 2.36 2.39 2.43 2.48 2.41 1.91  1.22 0.81 2.54 3.16 3.72 2.29 54.36 
2-L+T 2.66 2.70 2.71 2.69 − 2.69 0.80  4.71 4.45 4.35 1.58 − 3.77 38.96 
2-L+To 3.84 3.88 3.86 3.93 − 3.88 0.98  2.63 5.30 5.64 1.98 − 3.89 47.62 
3-L+T 6.73 6.71 6.92 6.72 6.94 6.80 1.68  3.55 2.08 1.78 2.54 1.95 2.38 29.94 
3-L 8.24 8.23 8.42 8.31 8.43 8.33 1.14  3.17 1.10 1.39 1.74 1.76 1.83 43.40 
3-L+To 10.37 10.13 10.40 10.72 − 10.41 2.33  2.36 2.84 1.96 1.58 − 2.18 24.75 
4-L 11.54 11.42 11.57 11.50 11.53 11.51 0.49  0.95 4.05 2.40 0.55 0.35 1.66 93.86 

                 

W
N

7A
 

1-L 0.61 0.60 0.62 0.56 0.60 0.60 3.81  13.40 12.20 12.39 13.14 12.12 12.65 4.60 
1-L+T 0.86 0.84 0.81 0.86 0.91 0.86 4.26  11.59 10.30 10.78 5.67 4.89 8.65 36.08 
1-L+To 1.07 1.07 1.10 1.18 1.09 1.10 4.15  6.44 9.19 13.20 19.39 14.10 12.46 39.75 
2-L 2.47 2.43 2.42 2.44 2.44 2.44 0.80  3.44 2.53 2.05 2.19 1.34 2.31 33.19 
2-L+T 2.76 2.78 2.71 2.73 2.72 2.74 1.06  2.88 3.11 3.32 3.88 2.94 3.23 12.51 
2-L+To 4.06 3.93 3.86 4.00 4.03 3.98 2.00  3.50 0.80 1.78 3.28 2.94 2.46 46.33 
3-L+T 6.75 6.68 6.91 6.91 6.96 6.84 1.76  3.08 2.27 1.95 1.89 0.97 2.03 37.39 
3-L 8.68 8.84 8.61 8.71 8.64 8.70 1.04  4.21 2.30 2.23 1.03 0.90 2.13 62.37 
3-L+To 10.64 10.63 10.58 10.69 − 10.63 0.43  1.10 0.68 0.78 2.01 − 1.14 53.00 
4-L 11.28 11.63 11.60 11.62 11.28 11.48 1.61  1.89 1.91 2.63 0.55 1.89 1.77 42.53 
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Table 5.7: Natural frequencies and damping ratios of the base-isolated building identified 
using low-amplitude WN base excitation data, continued. 

  Natural frequency (Hz)  Damping ratio (%) 

 Mode SSI NExT EFDD DSI OKID Mean CV (%)  SSI NExT EFDD DSI OKID Mean CV (%) 
W

N
7B

 
1-L 0.48 0.48 0.43 0.46 0.44 0.46 4.98  18.41 14.45 12.18 20.06 13.60 15.74 21.25 
1-L+T 0.75 0.76 0.73 0.74 − 0.75 1.73  7.84 7.47 8.68 8.92 − 8.23 8.34 
1-L+To 1.05 1.13 1.08 0.92 0.95 1.03 8.62  8.35 9.97 11.72 10.56 7.80 9.68 16.60 
2-L 2.36 2.37 2.35 2.47 2.41 2.39 2.06  3.13 3.57 2.70 3.53 3.23 3.23 10.86 
2-L+T 2.66 2.66 2.71 2.70 2.63 2.67 1.22  4.12 1.17 2.51 2.97 2.38 2.63 40.52 
2-L+To 3.92 3.89 3.92 3.88 − 3.90 0.56  3.57 1.37 2.10 2.97 − 2.50 38.58 
3-L+T 6.67 6.78 6.92 6.70 6.72 6.76 1.44  3.23 2.25 2.01 1.76 1.56 2.16 30.10 
3-L 8.79 8.30 8.42 8.43 8.51 8.49 2.17  3.49 3.23 2.22 2.01 1.53 2.50 33.33 
3-L+To 10.70 10.86 10.90 10.80 − 10.82 0.81  1.31 1.81 1.18 0.75 − 1.26 34.53 
4-L 11.61 11.25 11.31 11.54 11.59 11.46 1.46  3.44 3.34 2.21 1.27 1.93 2.44 38.35 

                 

W
N

7C
 

1-L 0.41 0.47 0.46 0.43 0.46 0.45 5.63  15.37 16.18 13.74 16.24 15.57 15.42 6.56 
1-L+T 0.79 0.79 0.73 0.71 − 0.76 5.46  9.55 15.49 11.74 9.11 − 11.47 25.40 
1-L+To 1.03 1.10 1.09 1.01 − 1.06 4.18  8.34 7.11 6.21 9.85 − 7.88 20.04 
2-L 2.42 2.39 2.41 2.45 2.41 2.42 0.90  1.87 0.93 4.05 1.70 0.98 1.91 66.60 
2-L+T 2.66 2.64 2.71 2.65 2.62 2.66 1.27  3.64 4.04 3.89 4.83 4.94 4.27 13.66 
2-L+To 3.86 3.95 3.92 3.88 − 3.90 1.05  4.64 2.52 5.60 3.91 − 4.17 31.15 
3-L+T 6.66 6.73 6.92 6.74 − 6.76 1.61  4.02 2.96 2.67 1.67 − 2.83 34.18 
3-L 8.39 8.47 8.42 8.32 8.28 8.38 0.91  3.38 3.14 3.29 3.60 2.82 3.25 8.95 
3-L+To 10.31 10.59 10.60 10.75 − 10.56 1.74  1.05 1.22 1.59 1.03 − 1.22 21.26 
4-L 11.40 11.33 11.41 11.54 11.58 11.45 0.91  0.80 3.99 2.21 3.45 2.73 2.64 46.65 

                 

W
N

8A
 

1-L 0.56 0.57 0.58 0.57 0.56 0.57 1.47  16.35 13.56 14.30 13.39 13.27 14.17 9.03 
1-L+T 0.77 0.87 0.78 0.81 − 0.81 5.57  15.21 14.63 10.61 10.58 − 12.76 19.66 
1-L+To 1.05 1.13 1.08 1.01 1.12 1.08 4.61  12.12 16.20 10.63 11.01 16.10 13.21 20.72 
2-L 2.45 2.41 2.41 2.42 2.40 2.42 0.79  6.24 6.78 6.47 4.44 4.63 5.71 19.14 
2-L+T 2.74 2.77 2.51 2.72 2.78 2.70 4.13  3.35 4.94 4.10 2.82 1.43 3.33 39.91 
2-L+To 3.82 3.79 3.78 3.88 − 3.82 1.19  1.25 1.48 1.54 4.69 − 2.24 73.07 
3-L+T 6.73 6.84 6.70 6.76 6.81 6.77 0.86  3.01 4.06 2.38 1.38 1.30 2.43 47.77 
3-L 8.34 8.45 8.61 8.62 8.52 8.51 1.36  3.17 2.85 1.87 1.65 2.36 2.38 26.88 
3-L+To 10.44 10.51 10.57 10.45 − 10.49 0.55  1.72 1.64 0.63 1.47 − 1.36 36.79 
4-L 11.48 11.43 11.20 11.42 11.47 11.40 1.01  2.60 3.39 2.24 2.10 2.33 2.53 20.27 

                 

W
N

8B
 

1-L 0.46 0.48 0.45 0.42 0.42 0.45 5.85  17.65 15.97 13.95 20.88 14.71 16.63 16.58 
1-L+T 0.73 0.82 0.73 0.68 − 0.74 7.88  7.23 7.78 7.85 6.89 − 7.44 6.15 
1-L+To 1.08 1.13 1.09 1.04 1.01 1.07 4.33  9.41 10.98 7.53 10.65 8.47 9.41 15.42 
2-L 2.37 2.37 2.35 2.33 2.37 2.36 0.76  6.82 7.20 7.23 5.85 4.92 6.40 15.60 
2-L+T 2.71 2.72 2.51 2.62 2.71 2.65 3.42  3.88 4.22 3.61 3.49 3.35 3.71 9.31 
2-L+To 3.66 3.66 3.65 3.68 3.80 3.69 1.69  3.51 1.93 2.56 2.86 1.91 2.55 26.35 
3-L+T 6.60 6.77 6.59 6.74 6.75 6.69 1.30  2.32 1.82 2.61 1.36 1.10 1.84 34.34 
3-L 8.40 8.39 8.48 8.49 8.38 8.43 0.64  2.70 2.81 2.80 1.05 1.30 2.13 41.22 
3-L+To 10.32 10.28 10.47 10.46 − 10.38 0.92  1.50 0.81 1.47 1.66 − 1.36 27.66 
4-L 11.52 11.28 11.24 11.35 11.37 11.35 0.94  3.73 3.33 1.83 4.20 4.10 3.44 27.93 

   
 

              

W
N

8C
 

1-L 0.45 0.45 0.46 0.42 0.42 0.44 4.25  19.72 15.56 15.55 14.49 14.09 15.88 14.11 
1-L+T 0.70 0.87 0.73 0.65 − 0.74 12.79  9.09 7.27 11.80 8.81 − 9.24 20.38 
1-L+To 0.82 0.99 0.98 0.84 0.91 0.91 8.58  8.74 7.47 8.90 6.73 7.97 7.96 11.30 
2-L 2.36 2.39 2.36 2.31 2.28 2.34 1.87  3.73 4.89 4.95 4.81 3.58 4.39 15.42 
2-L+T 2.71 2.76 2.51 2.61 − 2.65 4.21  4.89 2.83 3.91 3.53 − 3.79 22.66 
2-L+To 3.67 3.65 3.64 3.72 3.63 3.66 0.96  3.26 1.48 2.34 2.75 1.99 2.36 28.96 
3-L+T 6.54 6.65 6.59 6.67 6.55 6.60 0.88  1.06 2.48 2.39 1.90 1.68 1.90 30.30 
3-L 8.06 7.93 7.99 8.03 8.07 8.02 0.72  3.92 3.00 1.31 1.48 1.25 2.19 55.02 
3-L+To 10.45 10.56 10.75 10.43 − 10.55 1.38  1.98 0.32 1.77 0.65 − 1.18 69.32 
4-L 11.17 11.63 11.25 11.31 11.35 11.34 1.53  2.65 0.93 1.81 0.94 0.78 1.42 56.09 

T: transverse / L: longitudinal / To: torsion         
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The effect of the amplitude of the excitation in the dynamic properties of the BI 

building is clearly evidenced when the system identification results from the AV and 

WN, summarized in Table 5.6 and Table 5.7, are compared. Figure 5.24 shows the 

spectrogram, which plots the short-time Fourier transform obtained using a Hamming 

window applied to 180 second long data segments with 50% overlap; this corresponds to 

about 7 hours (see top of Figure 5.24) of the acceleration time history recorded in the EW 

direction at the North-East corner of the roof of the BI building. The temporal evolution 

of the frequencies of the first two longitudinal modes, which contribute the most to the 

response of the roof in the longitudinal direction, is observed. Initially, mode 1-L has a 

frequency of about 1.1 Hz, which then decreases to approximately 0.3 Hz, and 0.5 Hz 

during seismic test BI5-ICA100 and WN tests, respectively. After these base excitation 

tests, the frequency of mode 1-L under AV is recovered to a value around 1.1 Hz. The 

same behavior is repeated when the building is subjected to seismic test BI7-ICA140 and 

another set of WN base excitation tests. A similar pattern is also observed for mode 2-L, 

which has a frequency about 3.5 Hz under AV. 
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Figure 5.24: Spectrogram of the acceleration response measured in the North-East corner 
of the roof of the BI building. 

Figure 5.25 compares the absolute acceleration time histories measured in the E-

W direction (South-East corner) at the different floors of the building during WN test 

WN3C, with their counterparts simulated using the state-space model identified with 

DSI. A time interval between 120 and 190 seconds is shown. A very good match between 

the measured and identified responses is observed in all floors, confirming that the 

response reconstructed from the identified state-space model is in very good agreement 

with the measured acceleration response and, therefore, the accuracy of the identification 

process. Based on these results, it can be concluded that an equivalent linear elastic 

viscously damped model is able to accurately represent the response of the BI building at 

the level of excitation of the WN tests. 
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Figure 5.25: Comparison of measured and identified longitudinal absolute acceleration 
response in the E-W direction at the South-East corner for white noise test WN3C. 

The RRMSE between the absolute measured and the identified acceleration time 

histories for the entire length of the WN data for all the accelerometers recording in the 

E-W direction, are shown in Table 5.8. By analyzing all the WN tests, it is concluded that 

the RRMSE is lower than 40% in all cases, once again confirming a very good agreement 

between the measured and the identified acceleration responses. It is further noticed that 

the RRMSE is practically constant for all the WN tests, and therefore independent of the 

peak shear strain ( shearγ ) in the isolators. 

 



www.manaraa.com

185 
 

Table 5.8: RRMSE between absolute measured and identified acceleration time histories 
of all the accelerometers recording in the E-W direction. 

   Channel   

 RMS γshear 
[%] 66 72 54 60 42 48 30 36 18 24 6 12 µ 

[%] 
CV 
[%] 

WN1A 2.01 5.34 37.9 37.7 37.9 37.5 37.1 36.2 36.7 35.8 36.3 35.3 38.4 37.8 37.1 2.7 
WN1B 3.2 14.76 34.3 34.6 32.3 32.6 30.9 30.9 31.3 31.2 31.8 31.8 34.2 34.4 32.5 4.5 
WN1C 3.56 20.25 36.7 37.2 35.0 35.5 33.6 34.0 33.9 34.1 34.4 34.8 36.6 37.1 35.2 3.7 
WN2A 1.34 5.32 33.4 33.2 32.4 32.2 31.8 31.3 31.8 31.4 31.9 31.4 33.7 33.4 32.3 2.7 
WN2B 2.59 17.15 36.8 37.3 34.7 35.3 33.1 33.5 33.4 33.7 34.2 34.6 36.0 36.5 34.9 4.1 
WN2C 3.02 21.27 34.3 34.5 31.9 32.2 30.3 30.3 30.8 30.7 31.8 31.9 33.9 34.1 32.2 5.0 
WN3A 1.27 5.33 35.7 35.4 34.7 34.4 33.7 33.2 33.6 33.0 33.7 33.1 35.3 34.8 34.2 2.8 
WN3B 2.57 17.21 34.1 34.3 32.2 32.4 30.7 30.8 31.0 31.0 31.7 31.8 33.6 33.8 32.3 4.1 
WN3C 3.03 21.42 33.8 33.9 31.4 31.6 29.9 29.8 30.4 30.2 31.3 31.3 33.5 33.7 31.7 5.0 
WN4A 2.01 5.28 36.4 36.4 36.4 36.3 35.5 35.2 35.3 35.2 34.9 34.7 36.8 36.7 35.8 2.1 
WN4B 3.22 16.57 33.9 34.3 33.1 33.5 32.0 32.1 31.8 32.0 31.9 32.2 34.2 34.6 33.0 3.2 
WN4C 3.76 21.06 34.6 34.9 33.9 34.2 33.0 33.1 32.9 32.9 32.9 33.0 35.0 35.2 33.8 2.8 
WN5A 2.01 5.59 35.1 35.1 34.6 34.6 33.7 33.5 33.5 33.4 33.3 33.1 35.6 35.5 34.2 2.7 
WN5B 3.11 18.52 36.8 37.2 36.0 36.4 35.1 35.2 35.3 35.5 35.7 36.0 37.4 37.8 36.2 2.5 
WN5C 3.46 22.41 42.0 42.1 41.8 41.8 41.4 41.2 42.0 41.9 42.5 42.4 43.5 43.6 42.2 1.8 
WN6A 2.28 5.78 35.1 35.2 35.2 35.3 34.6 34.5 34.7 34.9 33.9 34.0 36.3 36.3 35.0 2.1 
WN6B 3.29 18.14 35.7 36.0 35.1 35.5 34.1 34.2 34.0 34.2 34.1 34.4 36.1 36.5 35.0 2.6 
WN6C 3.56 22.5 34.5 34.8 33.0 33.4 31.5 31.6 31.6 31.7 32.0 32.2 34.2 34.4 32.9 3.9 
WN7A 1.85 5.82 33.6 33.7 33.8 33.8 32.8 32.5 32.4 32.3 32.0 31.9 34.4 34.2 33.1 2.7 
WN7B 2.83 18.55 33.9 33.9 32.1 32.3 30.4 30.3 30.6 30.5 31.2 31.2 33.3 33.4 31.9 4.4 
WN7C 3.22 22.52 34.1 34.1 32.8 32.8 31.8 31.6 32.0 31.8 32.4 32.3 34.3 34.1 32.8 3.2 
WN8A 1.99 6.85 38.5 38.7 39.3 39.5 38.3 38.4 37.5 37.7 37.2 37.3 39.1 39.2 38.4 2.1 
WN8B 3.28 19.13 34.4 34.6 33.2 33.6 31.7 31.8 31.9 32.0 32.0 32.2 34.2 34.3 33.0 3.5 
WN8C 3.88 22.66 34.8 35.0 33.0 33.4 30.9 31.0 31.5 31.5 32.0 32.0 34.4 34.5 32.8 4.7 

5.6. Conclusions 

A full-scale five-story base-isolated (BI) reinforced concrete building was built 

and tested on the NEES@UCSD shake table in April 2012. The experimental program, 

which also included the testing of the building fixed at its base, aimed to investigate the 

behavior of the structure and the different types of nonstructural systems and components 

(NCSs) to obtain their dynamic interaction during seismic excitations of various 

intensities. In particular, the evaluation of base isolation as a seismic protection system 

for the structures and NCSs was of particular interest. 

In the BI configuration of the building, a sequence of seven earthquake motion 

tests were designed and applied to the building to progressively increase the seismic 
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demand on the structure and NCSs. Before and after each seismic test, low-amplitude 

white noise (WN) base excitation tests with three different nominal amplitudes were 

carried out and ambient vibration (AV) data were recorded continuously for 

approximately sixteen days. 

The effects of the isolation system in elongating the predominant periods of the 

building, augmenting the energy dissipation capability of the system, and concentrating 

the displacement in the isolation layer are clearly shown. The effectiveness of the 

isolation in reducing the peak floor acceleration and interstory drift demands is also 

demonstrated. The dependency of the secant stiffness and effective damping ratio on the 

shear deformation in the isolators is investigated using data from quality, WN, and 

seismic tests. 

Because of the low intensity of the WN and ambient excitations, a quasi-linear 

response of the system is assumed and the modal parameters of an equivalent viscously-

damped linear elastic time-invariant model are estimated using the vibration data 

recorded during these tests. Five system identification (SID) methods, including three 

output-only (SSI-DATA, NExT-ERA and EFDD) and two input-output (OKID-ERA and 

DSI) are used to estimate the modal properties (i.e., natural frequencies, damping ratios 

and mode shapes) of the BI building. An automated SID process using the SSI-DATA 

and NExT-ERA methods and based on the stabilization diagram is applied to the 

continuously-recorded AV data to identify the modal properties of the BI building under 

small amplitude excitations. Eight dominant modes were identified using the AV data. 

The first three correspond mainly to the deformation of the isolation layer, i.e., isolation 

modes, and higher modes correspond to structural modes mostly involving deformation 
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of the superstructure. With the WN test data, ten modes are identified, with the first three 

corresponding to the isolation modes. 

By analyzing the polar plots, it is concluded that all modes identified with AV 

data are almost purely classically damped. The degree of non-classical damping is higher 

for the isolation modes identified from the WN test data. Results obtained further showed 

that the identified modal parameters obtained by different methods are in good agreement 

and that the natural frequencies and damping ratios have the lowest and highest 

variability, respectively. Natural frequencies of the isolation modes identified with WN 

data are larger than those identified using AV data because of the reduction of the 

effective stiffness of the isolation layer. However, the differences between natural 

frequencies of structural modes identified from WN and AV data are much lower, 

suggesting that the structure itself experienced a linear elastic response during the WN 

tests. 

Damping ratios of the isolation modes are considerably higher than those of the 

structural modes, especially when the WN test data are used. This is because more 

intense excitations induce larger deformation of the isolators, implying that more energy 

is dissipated by hysteretic behavior of the bearings. This can be identified as equivalent 

viscous damping because of the assumed underlying mathematical model used for SID 

purposes. The identified damping ratios correlate well with the effective damping ratios 

computed from the hysteretic response of the bearings. 

This research also provided a unique opportunity to study the performance of 

different state-of-the-art SID methods when applied to vibration data recorded in a full-

scale BI building subjected to excitations of different amplitudes. It also helped to better 
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understand the behavior of high damping rubber bearings when subjected to dynamic 

loads from sinusoidal, ambient, WN, and seismic tests. 
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CHAPTER 6 

STATISTICAL ANALYSIS OF THE MODAL PROPERTIES 

OF A FIVE-STORY REINFORCED CONCRETE 

SEISMICALLY-DAMAGED BUILDING IDENTIFIED 

USING AMBIENT VIBRATIONS 

6.1. Introduction 

The widespread availability of sensors networks for civil structures has attracted 

significant attention in the field of continuous-time health monitoring of bridge and 

building structures. Different methodologies to identify damage in monitored structures 

have been investigated and vibration-based methods have been one of the most popular 

approaches for this purpose. Vibration-based methodologies aim to identify the modal 

properties of an equivalent linear-elastic viscously-damped model of the structure from 

the recorded vibration response. Damage is then detected based on changes of the modal 

properties, or quantities derived therefrom, identified before and after the structure has 

suffered damage, because physical properties of the structure (mass, stiffness, and 

damping) directly affect the vibration characteristics (e.g., Doebling et al. 1996, Doebling 
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1998, Chang et al. 2003, Fan and Qiao 2011, Brownjohn et al. 2011). Usually, due to 

operational and cost constraints, recording of vibration data from forced-vibration tests 

(e.g., shaker and pull-back tests) is not feasible in civil structures. Consequently, the use 

of low-amplitude dynamic output-only vibration data (ambient vibration or AV) is of 

vital importance for damage detection (DD) purposes. In this approach, operational 

modal analysis (OMA) or output-only system identification (SID) techniques are used 

with AV data recorded before and after the structure has suffered damage. AV can be 

continuously recorded, allowing online processing of the data measured before and after 

a damaging event or while a structure is deteriorating along the time. 

However, there are still important challenges in the application of autonomous 

SID and DD schemes. First, since the data need to be continuously processed, an 

automated SID procedure, allowing to distinguish between spurious and physical modes, 

needs to be implemented. Different methods to overcome this problem have been 

proposed in the literature (Pappa et al 1998, Peeters and De Roeck 2001, Verboven et al. 

2002, Van der Auweraer and Peeters 2004, Brincker et al. 2007, Magalhães et al. 2009, 

Rainieri and Fabbrocino 2010, Hu et al. 2012, Reynders et al. 2012, Ubertini et al. 2013, 

Vanlanduit et al. 2003). Secondly, the statistical variability of the identified modal 

properties need to be adequately investigated and understood, because sources different 

to damage can also induce variation on the dynamic characteristics of civil structures, for 

example temperature, soil structure interaction, measurement noise level, change in the 

boundary conditions, wind speed, etc. (e.g., Nayeri et al. 2008, Siringoringo and Fujino 

2008, Magalhães et al. 2009, Magalhães et al. 2012, Mikael et al. 2013, Peeters and De 

Roeck 2001, Hu et al. 2012). Third, availability of data recorded on real structures 
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undergoing real damage and degradation processes has been extremely limited. Most of 

the full-scale tests have been conducted on in-situ bridge structures condemned for 

demolition, in which artificial damage (e.g., partial saw cuts in steel I beams, partial cuts 

of post-tensioning tendons) was induced during the demolition process of the bridge 

(Farrar et al. 2000, Peeters and de Roeck 2001, Huth et al. 2005, Lauzon and DeWolf 

2006, Siringoringo et al. 2013, Dilena and Morassi 2011). However, this kind of artificial 

damage is not representative of real damage caused by natural loads or aging. For 

building structures, shake table tests have provided unique data to assess the modal 

parameters of buildings at different states of damage (e.g., Moaveni et al. 2011, Ji et al. 

2011, Hien and Mita 2011). Unfortunately, none of these test programs recorded AV data 

continuously, and therefore the implementation of an automated SID procedure using AV 

data recorded on a real structure subjected to damage induced by a realistic source of 

dynamic excitation has not been investigated. 

This chapter presents an statistical analysis of the modal properties of a full-scale 

five-story reinforced concrete (RC) building identified using AV data continuously 

recorded by twenty accelerometers for about fifteen days. The building specimen was 

fully outfitted with a wide range of nonstructural components and systems (NCSs) and 

tested on the NEES@UCSD shake table in base-isolated (BI) and fixed-base (FB) 

configurations. A sequence of earthquake motions were designed and applied to the FB 

building in order to progressively damage the structure and NCSs. Two state-of-the-art 

methods of OMA, the Data-Driven Stochastic Subspace Identification (SSI-DATA) and 

the Natural Excitation Technique combined with Eigensystem Realization Algorithm 

(NExT-ERA), are used with the AV data to automatically identify the modal properties of 
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the FB building at different damage states. A statistical analysis of the identified modal 

parameters is performed to investigate the statistical variability and accuracy of the 

system identification results. The effects of the environmental conditions and response 

amplitude level on the variation of the modal parameters are discussed. 

6.2. Description of the building 

The tested structure was a full-scale five-story cast-in-place RC building. It had 

one bay in the transverse direction and two bays in the longitudinal direction (direction of 

shaking), with plan dimensions of 6.6×11.0 m, respectively. The building had a total 

height (from the top of the foundation to the top of the roof slab) of 21.34 m and a floor-

to-floor height of 4.27 m. The estimated total weight was 3010 kN for the bare structure 

and 4420 kN for the structure with all the NCSs, both excluding the foundation which 

weighed about 1870 kN. Two identical one-bay special moment resisting frames, one 

placed on the north face and the other on the south face of the building, provided the 

lateral force resisting system in the direction of shaking (longitudinal direction of the 

building). Different design details were specified for the beams at different floors. Beams 

on floors two and three were reinforced with high-strength steel with a nominal yield 

strength of 830 MPa. Fourth floor had post-tensioned hybrid upturned beams connected 

to the columns with ductile rod connectors. Beams on the fifth floor had conventional 

moment resisting frame details but were connected to the columns with ductile rod 

connectors. The roof had special moment resisting frame beams. The six columns of the 

building had 0.66×0.46 m cross-section and were reinforced with 6 #6 and 4 #9 

longitudinal bars and a prefabricated transverse reinforcement electro-welded grid. The 
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floor system consisted of 0.2 m thick concrete slab reinforced in both directions at top 

and bottom at all levels. Two main openings on each slab were provided to accommodate 

the stairs and elevator. Two 0.15 m thick transverse concrete shear walls provided the 

support for the elevator guiderails and additional stiffness in the transverse and torsional 

directions of the building. Figure 6.1 shows the building specimen and schematic plan 

and elevation views. Further details about the structure and NCSs are provided in Chen et 

al. (2013,2015) and Pantoli et al. (2015a). The complete dataset of the project is archived 

in NEES repository (Hutchinson et al. 2014) and description of the recorded data and 

detailed instrumentation can be found in Pantoli et al. (2015b). 

  

 

Figure 6.1: Building specimen: (a) completed building, (b) schematic elevation view, (c) 
schematic plan view. (all dimensions in m) 

6.3. Instrumentation and test protocol 

6.3.1. Instrumentation 

A broad array of analog sensors with more than 500 acquisition channels was 

deployed in the structure and NCSs. These sensors included accelerometers, displacement 
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transducers (linear and string potentiometers), strain gauges, and load cells. In addition, a 

digital video camera array and a global positioning system (GPS) were installed. Two 

triaxial accelerometers were placed on the North-East and South-West corners of the 

shake table platen. The response of the structural skeleton was recorded using an 

accelerometer array consisting of four triaxial accelerometers per floor, one at each 

corner of each slab. These accelerometers, which are shown by green circles in Figure 

6.1c, were force-balance Episensor, with a full-scale of ±4g, a frequency bandwidth DC–

200 Hz, and wide dynamic range of 155dB. Their data acquisition system consisted of 

Quanterra Q330 data loggers from Kinemetrics, Inc., which includes signal conditioning, 

analog-to-digital (A/D) conversion, GPS time stamping for synchronization across 

multiple nodes, local memory buffer, and IP-network communication capabilities. 

In this study, the acceleration response of the structure measured by twenty 

accelerometers, two on each translational direction of each floor, is used to identify the 

dynamic properties of the building. These data were sampled at 200 Hz and, before the 

system identification process, the acceleration time series were detrended and filtered 

using a band-pass infinite impulse response (IIR) Butterworth filter of order 4 with cut-

off frequencies at 0.15 and 25.0 Hz, range covering all the modes having an important 

participation in the response of the system. 

6.3.2. Test protocol 

About two weeks prior to the beginning of the seismic tests in the BI 

configuration of the building, a system was deployed in the structure to record AV data 



www.manaraa.com

200 
 

continuously. The system recorded data until May 18, 2012, three days after the 

completion of the seismic tests in the FB configuration. 

In the FB configuration, six seismic input motions were defined based on global 

and local performance criteria and applied in order to progressively damage the structure 

and NCSs. Figure 6.2 shows the achieved input acceleration time histories and their 

displacement and pseudo-acceleration elastic response spectra for a damping ratio of ξ

=5%. Because the seismic tests induced damage in the building, different damage states 

are defined before and after each seismic motion, ranging from DS0 (undamaged state 

before the first seismic test) to DS6 (damage state after the last seismic test). Table 6.1 

summarizes the FB seismic test protocol, including the test dates. 

   
Figure 6.2: Achieved seismic input motions in the FB building: (a) acceleration time 
histories, (b) elastic displacement response spectra (ξ=5%), (c) pseudo-acceleration 
response spectra (ξ=5%). 

Table 6.1: Seismic test protocol in the FB configuration. 

Date Description Name 

May 7, 2012 Canoga Park  (1994 Northridge eq.) FB1-CNP100 

May 9, 2012 
LA City Terrace (1994 Northridge eq.) FB2-LAC100 

ICA 50% (2007 Pisco-Peru eq.) FB3-ICA50 

May 11, 2012 ICA 100% (2007 Pisco-Peru eq.) FB4-ICA100 

May 15, 2012 
TAPS Pump Station 67% (2002 Denali eq.) FB5-DEN67 

TAPS Pump Station 100% (2002 Denali eq.) FB6-DEN100 
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6.3.3. Damage states 

The seismic base excitations progressively induced damage on the structural 

members and NCSs. Because the FB building specimen was subjected to six earthquake 

motions, seven damage states (DS) are defined. DS0 corresponds to the baseline state of 

the building before the first seismic test (FB1-CNP100). DS1, DS2, DS3, DS4, DS5, and 

DS6 correspond to the damage states after the seismic test FB1-CNP100, FB2-LAC100, 

FB3-ICA50, FB4-ICA100, FB5-DEN6,7 and FB6-DEN100, respectively. It is 

noteworthy that DS0 does not correspond to the undamaged state of the structure because 

the building was previously tested in the BI configuration. However, the observed 

structural damage was negligible and the modal properties identified from AV data 

remained practically unchanged during the complete test phase of the BI building 

(Astroza et al. 2015a). The main damages observed by physical inspections in the 

structure and drywalls, which are the NCSs mostly affecting the dynamic characteristics 

of the building (Astroza et al. 2015b), are summarized in Table 6.2. 

Table 6.2: Summary of damage observed by physical inspection conducted at different 
damage states.  

Damage state Description 

DS0 No damage 

DS1 Structure: minor cracks on the slabs of floors 2 and 3 (< 0.2 mm). 
Interior partition walls: moderate damage (cracks at joints, crushing at corners)  
Balloon framing: moderate damage to interior gypsum (cracks at joints, crushing at corners), minor 
damage to exterior stucco (cracks around door openings), and no visible damage to clips. DS2 

DS3 

Structure: minor flexural cracks on the North beam of floor 3 (< 0.15 mm), minor spalling at the 
bottom of NW column at level 2, minor cracking on the slabs of floors 2, 3, and 4 (< 0.25 mm), and 
moderate cracking on the slabs of floors 2 and 3 (< 0.25 mm). 
Interior partition walls: moderate damage (cracks at joints, crushing at corners) 
Balloon framing: moderate-severe damage to interior gypsumboard (severe crushing at corners, 
screw pull-out failure, joints with severe cracks), moderate damage to exterior stucco (diagonal and 
horizontal cracks), and minor clip failure (≤ 5%). 
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Table 6.2: Summary of damage observed by physical inspection conducted at different 
damage states, continued. 

Damage state Description 

DS4 

Structure: minor flexural cracks on the North beam of levels 2 and 3 (< 0.25 mm), minor flexural 
cracking on the columns at levels 1 and 2 (< 0.1 mm), and moderate cracking on the slabs of floors 2, 
3, and 4 (< 0.30mm). 
Interior partition walls: severe damage (severe cracking to gypsumboard joints, gapping with 
adjacent elements, screw pull-out failure, severe crushing at corners). 
Balloon framing: moderate-severe damage to interior gypsumboard (severe crushing at corners, 
screw pull-out failure, joints with severe cracks), moderate-severe damage to exterior stucco 
(considerable diagonal and horizontal cracks) and minor clip damage (≈ 5%). 

DS5 

Structure: moderate flexural cracks on the North beam on floors 2 and 3 (< 0.5mm), moderate 
flexural cracks on the columns at levels 1 and 2 (<0.1mm) and moderate cracking on the slabs of 
floors 2, 3 and 4 (< 0.30mm). 
Interior partition walls: severe damage (gapping gypsumboard joints and screw pull-out failure, 
considerable amount of gypsum panel loosening, partial separation, and severe crushing at corners) 
Balloon framing: severe damage to interior gypsumboard (severe gapping at joints, panel partial 
separation), severe damage to exterior stucco (severe cracks and corner breaking), and severe failure 
to clips (40%) 

DS6 

Structure: severe damage to beams of floors 2 and 3 (buckling and fracture of the longitudinal 
reinforcing steel bars), severe spalling and cracking at the base of the columns at levels 1 and 2, and 
severe cracking on the slabs of 2, 3, and 4. 
Interior partition walls: severe damage (complete gypsum separation, gypsum fracture, considerable 
amount of severe gapping of gypsumboard joints) 
Balloon framing: severe damage to interior gypsumboard (panel complete separation), severe 
damage to exterior stucco (top and bottom corners torn apart), and severe damage to clips (70% 
failed) 

6.4. Automated operational modal analysis 

Two state-of-the-art output-only system identification methods are used to 

estimate the modal properties of the building specimen with the recorded AV data. These 

methods are the Data-Driven Stochastic Subspace Identification (SSI-DATA) and the 

Natural Excitation Technique combined with Eigensystem Realization Algorithm (NExT-

ERA). Both methods estimate the modal parameters of the building from an equivalent 

linear time-invariant (LTI) state-space (SS) model with all the sources of energy 

dissipation represented by linear viscous damping. 

In general, a discrete-time LTI-SS model can be written as: 

 1k k k k+ = + +d dx A x B u w  (6.1a) 

 k k k k= + +d dy C x D u v  (6.1b) 
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where n
k ∈x   = state vector, l

k ∈y   = measured output vector (i.e., l  = number of 

outputs), m
k ∈u   = input vector (i.e., m  = number of inputs), n n×∈dA   = state matrix, 

n m×∈dB   = input matrix, l n×∈dC   = output matrix, l m×∈dD   =  direct feed-through 

matrix, n
k ∈w    and l

k ∈v   = process and measurement noise, respectively, and k  

denotes the discrete time instant. 

Using the SID methods, the discrete-time state matrix ( dA ) and the output matrix 

( dC ) can be estimated. From the relationship between the discrete and continuous state 

matrices ( te ∆= Ac
dA , where cA  = continuous-time state matrix and t∆  = sampling 

time) it can be shown that their eigenvectors ( Ψ ) are identical, while the eigenvalues of 

cA  and dA  ( iλ  and iµ , respectively),  satisfy the condition 

 
( )ln i

i t
µ

λ =
∆

 (6.2) 

From the eigenvalues and eigenvectors of the discrete-time state matrix ( dA ) and 

the discrete-time output matrix ( dC ), the modal frequencies ( if ), modal damping ratios   

( iξ ), and mode shapes ( iφ ) of the system can be obtained using 

 
*

2 2
i i i
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 1,..., n = =  dΦ C Ψ φ φ  (6.5) 
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where the superscript * and ⋅  denote complex conjugate and absolute value, 

respectively. 

6.4.1. Natural Excitation Technique combined with Eigensystem Realization 

Algorithm (NExT-ERA) 

The first step of the method is based on the fact that the theoretical cross-

correlation function between the responses of two degrees of freedom of a structure 

excited by a broadband process (ambient vibration) and its free vibration response have 

the same analytical expression (James et al. 1993). Then, the ERA method (Juang and 

Pappa 1985) is used to estimate the matrices ( dA and dC ) of the state space model (with 

0k =u ) using the cross-correlation functions of the output responses measured on the 

structure to construct the Hankel matrix with the Markov parameters kY  (impulse 

responses) 

 ( )

1 1

1 2 1

1 2

1 ;

k k k
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 (6.6) 

in which ,α β  are user-defined parameters, such that if nα ≥  and nβ ≥  the matrix 

( )1k −H  is of rank n . For 1k =  and 2k = , the matrices ( )0H  and ( )1H  can be 

decomposed using singular value decomposition (SVD) as 

 ( ) ( ) 1/2 1/20 1T T T                    = = =n n n n n n nH UΣV U Σ V H U Σ A Σ V  (6.7) 
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where the matrices , , T
n n nU Σ V  are obtained eliminating the rows and columns 

corresponding to small singular values (spurious modes). Then, the state and output 

matrices ( dA  and dC ) corresponding to the minimum realization can be computed by 

 ( ) [ ]1/2 1/2 1/21T                   − −= =n n n n n nA Σ U H V Σ C I 0 U Σ  (6.8) 

In this study, the cross-correlation functions are computed through the inverse 

Fourier transform of the cross-power spectral density function, which are estimated using 

the Welch’s method with a Hanning window of length 1/8 of the total length of the signal 

and 50% overlapping. 

6.4.2. Data-Driven Stochastic Subspace Identification (SSI-DATA) 

The data-driven stochastic subspace identification (SSI-DATA) method assumes 

purely stochastic systems with no external input (i.e., 0k =u  in Equation 6.1) and that 

the process and measurement noises are zero mean white vectors. From the measured 

accelerations, the output extended block Hankel matrix ( 0|2 1i-Y ), which is composed by 

2i  block rows and j  columns, is constructed: 
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 (6.9b) 

where ky  is the response of the system at discrete time kt k t= ∆ , where t∆  is the 

sampling time. The extended observability matrix ( iΓ ) is obtained from the singular 

value decomposition of the weighted projection ( )1 2 1 2
T

i f p= =W W W Y Y W USVϑ . 

Finally, the matrices of the state-space model ( dA  and dC ) are estimated from iΓ  as 

 †
i i=dA Γ Γ  (6.10) 

 dC  = first l  rows of iΓ  (6.11) 

where iΓ  =  iΓ  without the last l  rows, iΓ  = iΓ  without the first l  rows, and the 

superscript †  denotes the Moore-Penrose pseudo-inverse. In this study, the principal 

component (PC) algorithm is used and consequently the weighting matrices are 1 ni=W I  

and 1 2
2 ,

T
p pp p

−= Y YW Y YΦ . Detailed description about the SSI-DATA can be found in Van 

Overschee and De Moor (1996). 

6.4.3. Automated identification process 

The identification process is performed using back-to-back ten-minute long time 

windows of structural vibration data, referred to as data sets hereafter. Since 
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approximately 15 days of continuous data, producing 1983 data sets need to be processed 

to identify the dynamic properties of the building, an automated procedure is used. For 

this, the stabilization diagram, which summarizes the identified modal parameters versus, 

is utilized to distinguish between physical and spurious (mathematical) modes. Values 

suggested in the literature are used for the stability criteria (e.g., Peeters and De Roeck 

2001, Van der Auweraer and Peeters 2004, Hu et al. 2012): 

 ( ),1% 5% 1 100 2% 10i j i j
si j

j j

f f
   ;      ;   MAC   ;   n

f φ φ

− ξ − ξ
≤ ≤ − ≤ ≥

ξ
 (6.12) 

where ,i if ξ  and ,j jf ξ  are the identified natural frequencies and damping ratios for 

models of consecutive orders i  and 2j i= + , ,i jMACφ φ  is the modal assurance criterion 

(Allemang and Brown 1982) of a pair of corresponding mode shapes identified for 

models of successive orders, and sn  denotes the number of times (as the model order is 

increased progressively by increments of 2) that an identified mode has triple stability 

defined in Equation 6.12. Modes with natural frequencies lower than 10 Hz are 

considered in the identification because they are expected to have a sufficiently high 

signal-to-noise ratio (SNR) (Astroza et al. 2015c). In addition, identified damping ratios 

higher than 7% are discarded as non-physical. 

It is well known that the degree of contamination of the stabilization diagrams 

depends on some specific parameters used on each SID method. In the case of SSI-

DATA and ERA the stabilization diagram are sensitive to the number of block rows and 

columns in the Hankel matrix used to compute the state ( dA ) and output ( dC ) matrices 

of the state-space model. To keep a reasonable computational cost and based on prior 
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analyses, a maximum model order of 60, 25i = , and 2 1totj n i= − +  ( totn  = total number 

of data points, i.e., all data of each data set are used) in SSI-DATA and 150α = β =  in 

ERA are chosen. Figure 6.3 shows the stabilization diagram obtained using SSI-DATA 

with the ambient vibration data set recorded on the building on May 04, 2012 between 

15:00 and 15:10 PST. 

 
Figure 6.3: Stabilization diagram generated by the automated SSI-DATA for the ambient 
vibration data recorded on May 4, 2012 between 15:00 and 15:10 PST (DS0). 

Because of the test protocol, different numbers of data sets are available for the 

different damage states (Table 6.3). It is observed that at DS2 and DS5 there are only 18 

and 42 data sets available, respectively, because two seismic tests per day were 

conducted on May 9 and May 15, 2012. It is noted that because a low number of data 

samples for DS2 and DS5 are available, a careful interpretation of the statistical analysis 

conducted at those damage states is needed. The results for DS2 and DS5 are required to 

provide a complete analysis of the continuously recorded ambient vibration data. 
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Table 6.3: Number of data sets for different damage states. 

Damage State Number of data sets 
DS0 444 
DS1 270 
DS2 18 
DS3 258 
DS4 573 
DS5 42 
DS6 378 

Total 1983 

6.5. System identification results 

Five modes are identified using the automated SID procedure. They correspond to 

the first two longitudinal (1-L and 2-L), first two coupled transverse-torsional (1-T+To 

and 2-T+To), and first torsional (1-To) modes of the building. The mode shapes 

indentified from the first data set at the undamaged state (DS0) using SSI-DATA are 

shown in Figure 6.4. These mode shapes are used later as reference to compute the modal 

assurance criterion (MAC) (Allemang and Brown 1982) for each of the identified mode 

shape as the damage in building progresses.  

 
Figure 6.4: Mode shapes identified using SSI-DATA with the ambient vibration data 
recorded on May 4, 2012 between 17:00 and 17:10 PST (DS0). 

Table 6.4 summarizes the success rate of the automated modal identification 

process, which represents, in percentage, the modes identified successfully (e.g., Peeters 

and De Roeck 2001, Magalhães et al. 2009) accordingly to the stability criteria defined in 
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Equation 6.12. The success rate of both SID methods are similar for all the identified 

modes at the different DSs. The damage does not show any clear effect on the success 

rate of the identification process. For most DSs, the success rate is usually higher than 

85%, except for mode 1-To (which exhibits a success rate lower than other modes in DS0 

and DS1) and mode 2-T+To at DS2, DS3, and DS5 (recall that DS2 and DS5 have only 

18 and 42 data sets, respectively). It is noted that the degree of participation of the 

different modes in the response of the building depends on the characteristics of the 

excitation. For ambient vibrations, it is expected that higher modes have a lower SNR 

than lower modes because of their lower participation in the response of the building. 

Success rates presented in Table 6.4 indicate a satisfactory performance of the automated 

identification process. 

Table 6.4: Success rate of the automated modal identification results. 

Mode DS0 DS1 DS2 DS3 DS4 DS5 DS6 
N-E SSI N-E SSI N-E SSI N-E SSI N-E SSI N-E SSI N-E SSI 

1-T+To 100 99 87 81 94 89 99 97 100 98 90 93 99 92 
1-L 97 95 82 73 89 78 97 96 94 90 86 88 84 81 
1-To 68 69 51 53 78 83 85 88 82 82 88 90 80 76 
2-T+To 98 98 90 91 56 61 56 55 79 75 38 33 99 98 
2-L 97 96 97 97 78 78 59 54 48 52 86 83 94 97 

N-E: NExT-ERA      SSI: SSI-DATA 

The natural frequencies obtained with the automated identification process using 

NExT-ERA and SSI-DATA are plotted as a function of time in Figure 6.5. In this figure, 

vertical black dashed lines mark the times of the six seismic tests conducted on the 

building. Results of both SID methods are in very good agreement. It can be clearly 

observed that the natural frequencies undergo significant reductions after each seismic 

test, and mode crossing appears between modes 1-L and 1-T+To following test FB1-

CNP100 and between mode 2-T+To and 2-L following test FB3-ICA50. Since the 
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building was primarily excited in its longitudinal direction, stiffness reduction is expected 

mainly in that direction. Consequently, the longitudinal modes are affected more 

significantly by the damage and experience a relatively larger decrease in their natural 

frequencies than the modes with transverse and torsional components. It is observed that 

for a given DS, the identified natural frequencies vary periodically. A discussed in 

Section 6.7, this fluctuation is due to the variation of the magnitude of the vibration 

response of the building caused by changes in the environmental conditions. 

  

Figure 6.5: Evolution in time of the identified natural frequencies: (a) NExT-ERA, (b) 
SSI-DATA. 

To analyze the overall trend of the identified damping ratios with increasing level 

of damage, Figure 6.6 shows the evolution of the identified equivalent viscous damping 

ratios. Similarly to the case if natural frequencies, cyclic variations due changes in 

environmental conditions are observed and will be discussed in Section 6.7.  A 

systematic increase of the damping ratio with increasing level of damage is noticed only 

for mode 1-L, which is purely longitudinal (direction of the imposed seismic excitation). 

The estimated damping ratios obtained by NExT-ERA and SSI are in good agreement but 

larger method-to-method variability than that of the identified natural frequencies is 
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observed. In addition, from Figure 6.5 and Figure 6.6 a slightly larger variability of the 

identified natural frequencies and damping ratios is observed for NExT-ERA than for to 

SSI-DATA. The identified natural frequencies and damping ratios obtained using SSI-

DATA are better group together, following the cyclic variation with less estimates far 

from this trend (outliers). 

 

 
Figure 6.6: Evolution in time of the identified damping ratios: (a) NExT-ERA, (b) SSI-
DATA. 

The evolution of the MAC values over time is presented in Figure 6.7. The MAC 

values are computed using the mode shapes shown in Figure 6.4 as reference. Since the 

same reference modes are used to compute the MAC values of the mode shapes identified 

over time using NExT-ERA and SSI-DATA methods, a good agreement between the 



www.manaraa.com

213 
 

mode shapes identified by both methods is observed from Figure 6.7. It is observed that 

the MAC values for modes 1-T+To and 1-L decrease at DS1 (after seismic test FB1-

CNP100), reaching values as low as 0.5. At DS2 (after seismic tests FB2-LAC100), the 

MAC of these two modes stabilize at values about 0.90. A similar phenomena is observed 

for modes 2-T+To and 2-L, which MAC values at DS3 (after test FB3-ICA50) show 

large variability and they stabilize at DS4. As previously discussed, mode crossing 

between modes 1-T+To and 1-L is observed after seismic test FB1-CNP100 and between 

modes 2-T+To and 2-L after seismic test FB3-ICA50. Oppositely to identified natural 

frequencies and damping ratios, no cyclic variation is detected for the MAC values. 

 

 
Figure 6.7: Evolution in time of the MAC values: (a) NExT-ERA, (b) SSI-DATA. 



www.manaraa.com

214 
 

6.6. Statistical analysis of the identified modal parameters 

6.6.1. Preliminary analysis 

To analyze the variability of the modal parameters identified using the two 

different SID methods, the mean (µ ) and coefficient of variation (CV) of the estimated 

modal parameters are computed for each DS. Mean and CV of the identified natural 

frequencies are summarized in Table 6.5 and Table 6.6 for NExT-ERA and SSI-DATA, 

respectively. Mean values of natural frequencies identified using NExT-ERA and SSI-

DATA are very similar for all the modes and at different DSs. Except for DS2 and DS5, 

which have a low number of data sets (Table 6.3) an therefore the statistics for those DSs 

need to be carefully analyzed, CVs of the natural frequencies identified using NExT-ERA 

are noticeably higher than those of SSI-DATA.  

Table 6.5: Mean and coefficient of variation of the natural frequencies identified using 
NExT-ERA. 

Mode 
DS0 DS1 DS2 DS3 DS4 DS5 DS6 

µ 
(Hz) 

CV 
(%) 

µ 
(Hz) 

CV 
(%) 

µ 
(Hz) 

CV 
(%) 

µ 
(Hz) 

CV 
(%) 

µ 
(Hz) 

CV 
(%) 

µ 
(Hz) 

CV 
(%) 

µ 
(Hz) 

CV 
(%) 

1-T+To 1.858 1.676 1.849 2.398 1.798 3.140 1.790 1.905 1.759 1.987 1.569 2.639 1.492 2.477 
1-L 1.917 2.421 1.798 4.592 1.664 3.147 1.589 3.276 1.451 3.737 1.059 2.654 0.874 5.489 
1-To 2.636 1.351 2.557 2.380 2.490 1.086 2.414 1.026 2.300 1.342 2.000 0.969 1.838 1.937 

2-T+To 6.796 1.208 6.663 1.547 6.481 1.101 6.637 1.475 6.484 1.975 5.823 5.322 5.710 1.949 

2-L 7.214 1.155 6.955 0.898 6.848 0.684 6.553 1.043 6.076 1.576 4.641 2.023 4.286 2.267 

Table 6.6: Mean and coefficient of variation of the natural frequencies identified using 
SSI-DATA. 

Mode 
DS0 DS1 DS2 DS3 DS4 DS5 DS6 

µ 
(Hz) 

CV 
(%) 

µ 
(Hz) 

CV 
(%) 

µ 
(Hz) 

CV 
(%) 

µ 
(Hz) 

CV 
(%) 

µ 
(Hz) 

CV 
(%) 

µ 
(Hz) 

CV 
(%) 

µ 
(Hz) 

CV 
(%) 

1-T+To 1.861 0.888 1.845 1.720 1.792 3.634 1.788 1.192 1.759 1.091 1.580 2.891 1.495 1.869 

1-L 1.914 1.167 1.794 2.824 1.702 5.697 1.586 1.990 1.452 2.689 1.071 7.528 0.870 5.606 

1-To 2.630 1.216 2.558 1.994 2.460 4.883 2.413 1.069 2.300 1.304 1.993 1.832 1.834 1.811 
2-T+To 6.794 1.159 6.677 1.414 6.523 2.989 6.605 1.137 6.473 1.474 5.958 5.730 5.709 1.598 
2-L 7.211 0.821 6.951 0.859 6.817 0.684 6.549 0.769 6.054 1.564 4.650 1.150 4.284 2.193 
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Figure 6.8 shows the normalized mean (normalized with respect to the mean at 

DS0) and CV of the identified natural frequencies ( fµ  and CVf , respectively) using 

NExT-ERA and SSI. From the fµ  at different DSs, the effect of damage in reducing the 

identified natural frequencies is clearly observed. The seismic excitation progressively 

damaged the structure and NCSs and consequently reduced the lateral stiffness of the 

building. It is noted that the natural frequencies of the longitudinal modes undergo larger 

relative reduction than torsional and coupled transverse-torsional modes as damage 

progressed. Mode 1-L experiences the largest relative reduction (with respect to DS0), 

ranging between 6% and 55% for DS1 and DS6, respectively. The normalized mean of 

the natural frequency of mode 2-L decreases between 4% and 41% for DS1 and DS6, 

respectively. Coupled transverse-torsional and torsional modes experience less relative 

reductions, e.g., mean values of the identified natural frequencies of modes 1-T+To and 

1-To reduce 1% and 3% at DS1 and 20% and 30% at DS6. In spite the seismic 

excitations were applied only in the longitudinal direction of the building, transverse and 

torsional stiffness of the building also changed noticeably. 

The CV of the identified natural frequencies (Figure 6.8) seems not sensitive to 

the level of damage. CVf  is lower than 10% for all the modes and at different DSs. 

Furthermore, the CVf  of each mode at a given damage state identified using NExT-ERA 

and SSI are similar, suggesting that the variability is most likely coming from a physical 

phenomenon more than from the uncertainty associated to the SID methods themselves. 
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Figure 6.8: Mean and coefficient of variation of the identified natural frequencies. 

Figure 6.9 shows the mean and CV of the damping ratios ( ξµ  and CVξ , 

respectively) at different DSs identified using NExT-ERA and SSI-DATA. The mean 

values across all the identified modes range from 1.0% to 3.0%. For mode 1-L, ξµ  is 

higher at DS5 and DS6, which can also be observed in Figure 6.6. The structural and 

nonstructural damage observed at DS5 and DS6 is moderate to severe (see Table 6.2), 

specifically, significant cracks were developed in beams and columns of the structure. 

The mathematical model assumed in the SID methods used in this work assumed that all 

the sources of energy dissipation are represented by linear viscous damping. Therefore, 

the higher ξµ  of mode 1-L identified at DS5 and DS6 is most likely due to the higher 

hysteretic energy dissipated associated with this mode (recall that mode 1-L undergoes 

the highest reduction of natural frequency as damage progressed), which is identified as 
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equivalent viscous damping by the SID methods. Damping ratio estimates are sensitive to 

the amplitude of the structural response; however, as discussed in Section 6.7, the 

magnitude of structural vibration at different DSs is comparable. No clear trend in the 

identified damping ratios of other modes as damage progresses is observed. 

 

Figure 6.9: Mean and coefficient of variation of the identified damping ratios. 

Consistent with the results obtained for the identified natural frequencies, the CVs 

of the identified damping ratios do not appear sensitive to the level of damage; however 

they are much larger than the CVs of the corresponding natural frequencies, with values 

ranging mostly between 30% and 70%. Analytical and experimental studies on system 

identification have shown that the CVs of natural frequencies are considerably smaller 

than those of damping ratios (e.g., Gersch 1974, Pakzad and Fenves 2009). 
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Figure 6.10 shows the mean and CV corresponding to the MAC values of the 

modes ( MACµ  and MACCV , respectively) identified using NExT-ERA and SSI-DATA. 

MAC values are computed utilizing the modes shapes shown in Figure 6.4 (identified 

from the first data set at DS0) as reference. MACµ  and MACCV  associated to NExT-ERA 

and SSI-DATA are very similar. For each mode, the values of MACµ  at DS0 are larger 

than 0.9, confirming a good agreement between the mode shapes identified for different 

data sets at DS0. 

 

Figure 6.10: Mean and coefficient of variation for the MAC values of the identified 
mode shapes with respect to the reference modes. 

Values of MACµ  for modes 1-T+To and 1-L change noticeably after the test FB1-

CNP100. As previously discussed, mode crossing between 1-T+To and 1-L is detected 

after FB1-CNP100. The MACµ values for these two modes converge to about 0.90 at DS5 
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and DS6. It is noted that higher MACCV  are estimated for these two modes at DS1 and 

DS2, therefore their MACµ  have a larger uncertainty associated. The value MACµ  of mode 

1-To remains practically equal to one for the different DSs. MACµ  of higher modes tend 

to decrease from DS0 to DS3, but then it increases from DS4 to DS6. Particularly, low 

values of MACµ  are observed for modes 2-T+To and 2-L at DS3. Mode crossing between 

these modes is noticed after FB2-LAC100, then the same phenomena observed when 

modes 1-T+To and 1-L cross is observed here. 

6.6.2. Probability distributions 

Histograms are used as nonparametric estimation of the probability density 

functions ( pdf ) of the identified modal parameters. To construct the histograms, the 

number of bins is chosen equal to the square root of the number of observations (or data 

sets), as suggested by Montgomery and Runger (2010). Figure 6.11a,b present the 

histograms of the natural frequencies and damping ratios, respectively, of the five modes 

identified at DS0 using SSI-DATA. Figure 6.11c,d present the histograms of the natural 

frequencies and damping ratios, respectively, of the five modes identified at DS6 using 

NExT-ERA. The identified natural frequencies have an approximate symmetric and bell-

shaped distribution, suggesting they approximately follow a normal distribution. On the 

other hand, the positive skew of the histograms corresponding to the damping ratios 

indicates that a lognormal distribution might be a good choice to characterize the pdf  of 

the identified damping ratios. It is worth noting that similar results were obtained for all 
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the identified modes at the different damage states, but are not presented herein because 

of space limitations. 

 

 

 

 
Figure 6.11: Histograms for natural frequencies and damping ratios: (a) Natural 
frequencies at DS0 using SSI, (b) Damping ratios at DS0 using SSI, (c) Natural 
frequencies at DS6 using NExT-ERA, (d) Damping ratios at DS6 using NExT-ERA. 

Probability plots are used to determine more quantitatively which underlying 

probability distributions are followed by the identified modal parameters. This technique 

is especially useful to investigate small and moderate size data samples, such as the 

datasets of each damage state in this work (18 to 573 data sets are available for different 
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damage states). If the data points plotted on a probability paper corresponding to a given 

pdf  show a linear trend, this indicates that the hypothesized pdf  appropriately 

characterizes the data (Montgomery and Runger 2010). Figure 6.12a,b present the normal 

and lognormal probability plots for the natural frequencies and damping ratios, 

respectively, identified at DS0 using SSI-DATA. Figure 6.12c,d present the normal and 

lognormal probability plots for the natural frequencies and damping ratios, respectively, 

identified at DS6 using NExT-ERA. Each “×” symbol represents a data point against its 

respective probability assuming the given pdf ; a reference straight line between the 25th 

and 75th percentile points is drawn to assess the closeness of the points to a straight line. 

For the natural frequencies, the S shaped-curve indicates that the data has shorter tails 

than a normal distribution with the same mean and standard deviation. For the damping 

ratios, the data also have shorter tails than a lognormal distribution with the same log 

mean and log standard deviation. Based on the results presented above, the identified 

natural frequencies and damping ratios are assumed to be reasonably modeled by normal 

and lognormal random variables, respectively. The determination of confidence intervals 

in the next section makes use of these assumptions. It is noteworthy that in addition to 

normal and lognormal distributions, the extreme value, Rayleigh, and Weibull 

distributions were also investigated. The fit of normal distribution for the identified 

natural frequencies and lognormal distribution for the identified damping ratios are the 

best among all the analyzed pdf . It is noted that Pakzad and Fenves (2000) found that 

the mean of identified natural frequencies and damping ratios of the Golden Gate Bridge 

also approximately follow normal and lognormal distributions, respectively. 
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Figure 6.12: Probability plots for natural frequencies and damping ratios (a) Frequency 
at DS0 using SSI; (b) Damping at DS0 using SSI; (c) Frequency at DS6 using NExT-
ERA; (d) Damping at DS6 using NExT-ERA. 

6.6.3. Confidence intervals 

The confidence interval (CI) on the mean of the identified natural frequencies and 

damping ratios are computed. Recall that a confidence interval estimate for a parameter 

θ  is an interval l u≤ θ ≤ , where l  and u  are called lower and upper confidence bounds 

and are obtained from the data, such that the true value of θ  resides in that interval with 

confidence ( )100 1 %−α . A short CI implies more precision or equivalently less 
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uncertainty in the estimated values of the parameter. Since the identified natural 

frequency of each mode for a given DS approximately follows a normal distribution, the 

CI on its means (over a monitoring period for a fixed DS) is obtained using the t −

distribution (Montgomery and Runger 2010) as 

 2, 1 2, 1
ˆ ˆ

ˆ ˆf f
f n f f nt t

n nα − α −
σ σ

µ − ≤ µ ≤ µ +  (6.13) 

where ˆ fµ  and ˆ fσ  are the sample mean and sample standard deviation of the natural 

frequency, n  is the number of samples, and 2, 1ntα −  is the upper 100 2α  percentage 

point of the t −  distribution with ( )1n −  degrees of freedom. For the identified damping 

ratios, which approximately follow a lognormal distribution, the Cox’s method (Land 

1972) is used to obtain the confidence intervals on the mean as recommended by Zhou 

and Gao (1997). Table 6.7 and Table 6.8 present the 95% CIs for the mean of the 

identified natural frequencies estimated using NExT-ERA and SSI-DATA, respectively. 

It is observed that the CIs are narrow implying low variability in the identification results 

for the natural frequencies. Although CIs of the mean of the identified natural frequencies 

obtained using both SID methods are very similar, CIs corresponding to NExT-ERA are 

wider than those obtained for SSI-DATA, which is consistent with the results presented 

in Figure 6.5, Table 6.5, and Table 6.6. 

Table 6.7: Confidence intervals for the natural frequencies identified using NExT-ERA. 

Mode DS0 DS1 DS2 DS3 DS4 DS5 DS6 
l u l u l u l u l u l u l u 

1-T+To 1.855 1.861 1.843 1.855 1.769 1.827 1.785 1.794 1.756 1.762 1.555 1.583 1.488 1.496 

1-L 1.913 1.922 1.787 1.809 1.636 1.692 1.582 1.595 1.446 1.455 1.050 1.069 0.869 0.879 
1-To 2.632 2.640 2.547 2.568 2.475 2.506 2.411 2.417 2.297 2.303 1.994 2.007 1.834 1.842 
2-T+To 6.789 6.804 6.650 6.676 6.430 6.532 6.620 6.653 6.472 6.496 5.658 5.988 5.699 5.721 

2-L 7.206 7.222 6.947 6.962 6.821 6.875 6.542 6.564 6.064 6.087 4.610 4.673 4.276 4.296 
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Table 6.8: Confidence intervals for the natural frequencies identified using SSI-DATA. 

Mode DS0 DS1 DS2 DS3 DS4 DS5 DS6 
l u l u l u l u l u l u l u 

1-T+To 1.860 1.863 1.841 1.850 1.757 1.827 1.786 1.791 1.758 1.761 1.565 1.595 1.492 1.498 
1-L 1.911 1.916 1.787 1.801 1.646 1.758 1.582 1.590 1.448 1.455 1.044 1.098 0.865 0.876 
1-To 2.627 2.634 2.550 2.567 2.393 2.526 2.410 2.417 2.297 2.303 1.981 2.005 1.830 1.838 

2-T+To 6.787 6.802 6.665 6.689 6.392 6.654 6.593 6.618 6.464 6.482 5.761 6.156 5.699 5.718 

2-L 7.206 7.217 6.943 6.958 6.790 6.844 6.540 6.557 6.043 6.065 4.632 4.668 4.275 4.294 

The 95% CIs for the damping ratios estimated using NExT-ERA and SSI-DATA 

are shown in Table 6.9 and Table 6.10, respectively. The CIs are narrow and always 

contain the corresponding sample mean, but they are relatively broader than those of the 

identified natural frequencies. Differences between the CIs of the mean of the damping 

ratios obtained using NExT-ERA and SSI-DATA are noticeably larger than those of the 

natural frequencies. 

Table 6.9: Confidence intervals for the damping ratios identified using NExT-ERA . 

Mode DS0 DS1 DS2 DS3 DS4 DS5 DS6 
l u l u l u l u l u l u l u 

1-T+To 1.19 1.33 1.35 1.52 1.56 4.56 1.26 1.41 1.29 1.40 1.65 2.40 1.48 1.69 
1-L 1.49 1.67 1.74 2.07 2.05 5.57 1.73 1.97 1.94 2.15 3.08 4.43 2.82 3.19 

1-To 1.49 1.61 1.58 1.78 1.72 2.56 1.50 1.64 1.57 1.67 1.65 1.95 1.56 1.69 

2-T+To 1.57 1.75 1.67 1.89 1.85 2.98 1.42 1.84 1.56 1.78 1.03 2.65 1.92 2.18 
2-L 1.80 2.07 1.24 1.42 1.14 2.00 1.48 1.86 1.89 2.13 1.77 2.90 1.76 2.07 

Table 6.10: Confidence intervals for the damping ratios identified using SSI-DATA . 

Mode DS0 DS1 DS2 DS3 DS4 DS5 DS6 
l u l u l u l u l u l u l u 

1-T+To 1.11 1.21 1.30 1.46 1.74 2.97 1.15 1.26 1.17 1.25 1.50 1.83 1.31 1.46 

1-L 1.45 1.61 1.79 2.08 2.71 3.91 1.69 1.87 1.96 2.14 3.58 3.84 2.81 3.13 

1-To 1.48 1.64 1.53 1.68 1.90 2.55 1.37 1.47 1.54 1.65 1.82 2.15 1.46 1.60 
2-T+To 1.90 2.11 1.77 1.90 1.98 2.55 1.71 1.85 1.78 1.90 1.45 3.09 2.18 2.33 
2-L 2.31 2.72 1.49 1.58 1.99 2.38 1.78 1.94 2.15 2.44 2.35 2.78 1.84 2.12 

It is noted that some studies have proposed methods to estimate the uncertainty 

bounds on the modal parameters of linear systems identified in a single experiment (e.g., 

Reynders et al. 2008, Dohler et al. 2013). The uncertainty bounds presented in this 

chapter also include other effects different to the inherent uncertainty of the SID methods, 
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such as environmental effects as discussed later. Analysis of the uncertainty related to the 

SID methods is out of the scope of this chapter. 

6.6.4. Effect of damage 

From the histograms presented previously, the best-fit pdf for the identified 

natural frequencies and damping ratios are calculated assuming they follow normal and 

lognormal distributions respectively, as confirmed by the probably plots presented in 

Section 6.6.2. Figure 6.13 shows the best-fit normal pdf of the natural frequencies 

identified using SSI and NExT-ERA at the different DSs as contour plots. Although the 

number of data sets available for damage states DS2 and DS5 is much lower than for 

other DSs, their results are included to provide a complete description and analysis of the 

recorded data. It is observed that the mean of the natural frequency of each mode 

decrease as the damage increases. The relative reduction of the natural frequencies is 

higher for the longitudinal modes (1-L and 2-L) than for modes with transverse and 

torsional components because the input base excitation was applied only in the 

longitudinal direction of the building. From DS0 to DS4 the reduction in the natural 

frequencies is gradual, however, from DS4 to DS5 abrupt reduction of the natural 

frequencies of all identified modes is observed. It is noted that seismic motion FB5-

DEN67 correspond to the design earthquake and it produced moderate to severe 

structural damage and severe nonstructural damage (see Table 6.2).  

Most vibration-based damage identification methods rely on the changes of the 

identified modal parameters. However, as observed in Figure 6.13, changes in the 

identified modal parameters due to environmental effects can be even larger than those 
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due to structural or nonstructural damage, especially for minor levels of damage (e.g., 

those induced by motions between serviceability and design level earthquakes). Different 

approaches to account for the effects environmental effects on identified modal 

parameters have been proposed in the literature, such as principal component analysis 

(e.g., Hsu and Loh 2010) and black-box models, e.g. the Autoregressive with eXogenous 

inputs (ARX) (e.g., Peeters and De Roeck 2001, He 2008). 

 
 

 
Figure 6.13: Contour plot of the best-fit pdf of the identified natural frequencies (a) 
NExT-ERA, (b) SSI. 

6.7. Effects of environmental conditions on the identified modal properties 

In spite the environmental conditions were not measured on the site where the 

building specimen was tested, hourly measurements recorded at different climate stations 

located a few miles from the site were compared and not significant variations were 

detected. The wind speed and temperature measured about 4.5 kilometers away from the 

shake table site are plotted in Figure 6.14 over the time window for which the modal 

identification is conducted. It is observed that environmental parameters vary 

approximately periodically every 144 data sets, i.e., 1 day cycles with peaks at around 2 
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p.m. Unfortunately, the accuracy of the climate station was not very high, especially for 

wind speed measurements, and data were collected only at one hour intervals. 

 
Figure 6.14: Wind speed and air temperature profiles measured 3 miles away from the 
building over the 15-day monitoring period. 

To analyze the correlation between the environmental conditions, ambient 

vibration level of the building response, and the identified modal properties, Figure 6.15 

shows the root-mean-square (RMS) acceleration at the roof level (magnitude of 

horizontal components) and the identified natural frequencies and damping ratios of the 

first four modes for the different data sets corresponding to DS0 and DS6. Figure 6.15a 

and c shows the RMS acceleration at the roof and the identified natural frequencies of the 

first four modes for the data sets of DS0 and DS6, respectively. Similarly, Figure 6.15b 

and d shows the RMS acceleration at the roof level and the identified damping ratios of 

the first four modes for the different data sets corresponding to DS0 and DS6, 

respectively.  

By comparing Figure 6.14 and the RMS acceleration at the roof plotted in Figure 

6.15, it is observed that the wind speed, temperature, and RMS acceleration at the roof 

level have a similar periodic variation and are in phase, all of them having the maximum 

approximately at the same time (2 p.m). The effects of wind speed and temperature on 
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the identified natural frequencies and damping ratios cannot be discriminated because 

both environmental parameters exhibited a similar periodic variation over time. Other 

studies have also pointed out the difficulty or impossibility of separating the effects of 

wind speed and temperature on the identified modal parameters (Sohn 2007, Kuok and 

Yuen 2012). From Figure 6.15 it is clearly observed that as the amplitude of the vibration 

response at the roof increases, the identified natural frequencies decrease and the 

damping ratios increase. 

 

 
Figure 6.15: Evolution of natural frequency and damping ratios overlaid with RMS 
values (a) Frequency at DS0 using SSI; (b) Damping at DS0 using SSI; (c) Frequency at 
DS6 using NExT-ERA; (d) Damping at DS6 using NExT-ERA. 
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Figure 6.15: Evolution of natural frequency and damping ratios overlaid with RMS 
values (a) Frequency at DS0 using SSI; (b) Damping at DS0 using SSI; (c) Frequency at 
DS6 using NExT-ERA; (d) Damping at DS6 using NExT-ERA, continued. 

To summarize the data in Figure 6.15, the natural frequencies and damping ratios 

of the modes identified at DS0 and DS6 using SSI and NExT-ERA versus the RMS at the 

roof are plotted in Figure 6.16. As the amplitude of the building response (RMS at the 

roof) increases, the identified natural frequencies decrease (see Figure 6.16a and c) and 

the identified damping ratios increase (see Figure 6.16b and d). The trends are very clear 

form the five identified modes, however, the scatter increases for higher modes. It is 
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noted that the participation of the higher modes in the measured building response is 

lower than that of the lower modes; consequently, the SNR is lower for the higher modes 

higher modes and therefore a higher estimation uncertainty is expected for higher modes. 

 

 

 

 
Figure 6.16: Identified natural frequencies and damping ratios versus RMS at the roof 
(a,b) DS0; (c,d) DS6. 
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6.8. Conclusions 

This chapter presented the results of an automated system identification process 

performed on a full-scale five-story reinforced concrete (RC) seismically-damaged 

building specimen fully equipped with a variety of non-structural components and 

systems (NCSs). The building was built and tested at the NEES-UCSD shake table and, 

when fixed at its base, was subjected to a sequence of earthquake motions selected to 

progressively damage the structure and NCSs. Using ambient vibration data recorded 

continuously at different damage states of the building during approximately 15 days, the 

stochastic subspace identification method (SSI-DATA) and the Natural Excitation 

Technique combined with the Eigensystem Realization Algorithm were used to estimate 

the modal parameters (natural frequencies, damping ratios, and mode shapes) of the 

building.  

An automated identification procedure, based on the concept of the stabilization 

diagram, was implemented and used with back-to-back ten-minute long time windows 

(data sets) of structural ambient vibration to identify the modal properties of five modes 

of the building. Modal parameters of a total of 1983 data sets were identified. The 

identified modal properties for a fixed damage state of the building were statistically 

analyzed using histograms, their fitted probability distributions, probability plots, and 

confidence intervals.  Furthermore, the temporal variations in the identified modal 

parameters were investigated versus changes in environmental conditions (temperature 

and wind speed) and versus the amplitude of the structural ambient vibrations as 

measured by the root mean square (RMS) acceleration at the roof level. 
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The results obtained showed that the modal properties identified using SSI-DATA 

and NExT-ERA are in very good agreement. In addition, among the identified modal 

parameters for a fixed damage state, the natural frequencies and damping ratios showed 

the lowest and highest variability, respectively. The effects of damage were investigated 

through the probability distributions and confidence bounds of the identified modal 

parameters, which may be used as a statistical damage detection tool. The mean value of 

the identified natural frequencies decreased as the damage in the building progressed. 

However, changes in the identified natural frequencies due to environmental conditions 

and amplitude of the building response can be larger than those due to structural or 

nonstructural damage, especially for minor levels of damage (e.g., those induced by 

motions between serviceability and design level earthquakes). Based on the analysis of 

probability plots, it was concluded that the fit of normal distribution for the identified 

natural frequencies and lognormal distribution for the identified damping ratios are the 

best among all the analyzed probability density functions. 
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CHAPTER 7 

MATERIAL PARAMETER IDENTIFICATION IN 

DISTRIBUTED PLASTICITY FE MODELS OF FRAME-

TYPE STRUCTURES USING NONLINEAR STOCHASTIC 

FILTERING 

7.1. Introduction 

The fields of system and damage identification have attracted significant attention 

in the structural engineering community over the last forty years. Important life-safety 

and economic benefits can be attained by providing information about the condition of a 

structure after it has been exposed to natural or man-made hazards or aging. Because of 

the significance that structural health monitoring (SHM) has gained with the aim of 

implementing damage identification and control strategies, the research in structural 

system identification has increased significantly during the last twenty years. Numerous 

studies have focused on vibration-based damage identification methods, which relate 

changes in the identified modal parameters of structures to damage (e.g., Doebling et al. 

1996, Housner et al. 1997); but only in recent years, these methods have been applied to 
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real structures or full-scale structural specimens (e.g., Ji et al. 2011, Moaveni et al. 2010, 

Moaveni et al. 2011, Astroza et al. 2013). However, some researchers have objected the 

use of modal parameters for damage identification purposes, because modal properties 

are related to global properties of the structure, while damage occurs locally. In addition, 

linearity is an idealization of the response behavior of real structures, since nonlinearities 

are intrinsically present in structural dynamics (Kerschen et al. 2006). Considering the 

importance of nonlinearities (mainly material and geometric nonlinearities) in the 

dynamic response of civil structures, system and damage identification for nonlinear 

structures have been the subject of intense research. When nonlinearities are properly 

considered in the system identification process, damage can be directly determined from 

the identified nonlinear model. Early studies in nonlinear structural system identification 

were conducted based on simplified structural models and different techniques, such as 

the extended Kalman filter (EKF) and least-squares (LS), were utilized in the 

identification process (e.g., Masri and Caughey 1979, Yun and Shinozuka 1980, Imai et 

al. 1989). More recently, new estimation techniques have been proposed (e.g., unscented 

Kalman Filter, Particle Filters, recursive LS) for parametric identification of nonlinear 

structures (e.g., Chassiakos et al. 1998, Yang and Lin 2004, Corigliano and Mariani 2004, 

Wu and Smyth 2007, Chatzi and Smyth 2009). However, all of these studies have used 

highly idealized structural models (e.g., chain-like MDOF system, shear building 

models), localizing the modeling of nonlinear (hysteretic) behavior in a few prescribed 

elements defined by nonlinear hysteretic force-deformation laws, such as the Bouc-Wen 

model (Ismail et al. 2009). The nonlinear hysteretic laws used in these studies are not 

traditionally used in state-of-the-art modeling and simulation of civil structures, because 
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they are not sufficiently accurate to simulate the actual behavior of structural materials. 

Also, an important drawback is that the parameters of the localized nonlinear behavioral 

models of the prescribed nonlinear elements are purely empirical. The values of these 

parameters vary from one element to another; consequently, the identification process 

must deal with the estimation of tens or hundreds of parameters even for small size 

structural models. 

To use more realistic structural models in the system and damage identification 

processes, finite element (FE) model updating has emerged as a powerful methodology 

(Friswell and Mottershead 1995, Housner et al. 1997, Marwala 2010, Moaveni et al. 

2010). Finite element model updating can be defined as the process of calibrating a FE 

model to minimize the discrepancy between the FE predicted and measured responses of 

real structures. This process can be conducted in the frequency, time, or modal domains 

and it can be formulated for deterministic or stochastic models of structures. Defined as 

dynamic models subjected to stochastic loading, stochastic models can be used to assess 

the uncertainty of the estimated parameters as a part of the FE model updating procedure 

(Beck and Katafygiotis 1998). 

In recent years, Bayesian techniques have been used for FE model updating of 

linear and nonlinear structures, for both static and dynamic loading (e.g., Ching et al. 

2006, Muto and Beck 2008, Huang et al. 2010, Nasrellah and Manohar 2011, Yang et al. 

2012, Yuen and Kuok 2011, Giagopoulos et al. 2013, Simoen et al. 2013). However, for 

numerical simulation of the nonlinear structural response, these studies have used highly 

simplified nonlinear structural or FE models (such as lumped plasticity models, shear 

building models, empirical-based nonlinear material models) which are not capable to 
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represent well the actual structural behavior. None of these studies have used state-of-the-

art, advanced, mechanics-based structural FE models that are currently used for analysis 

and design of nonlinear structures (Filippou and Fenves 2004). 

The FE method, or more specifically computational structural mechanics, is still 

an active area of research aiming at high-fidelity nonlinear response simulation of 

structures up to incipient collapse. Different types of finite elements (e.g., 1D beam-

column elements, 2D plate/shell elements, 3D continuum/brick elements) with different 

formulations (e.g., displacement-based, force/stress-based, mixed) and various nonlinear 

material constitutive models (e.g., pseudo-elasticity, plasticity, coupled damage-

plasticity, smeared crack, etc.) have been and are still being developed for this purpose. 

For frame-type steel or reinforced-concrete structures, force-based and displacement-

based nonlinear beam-column finite element models provide a good compromise between 

computational cost, numerical robustness, and accuracy (Taucer et al. 1991). In this FE 

modeling approach the element is discretized into longitudinal steel and/or concrete 

fibers; the section force-deformation relation is derived by numerical integration (over 

the element cross-section) of the nonlinear uniaxial material constitutive behavior of the 

fibers; the element force-displacement behavior is obtained through numerical integration 

of the section force-deformation behavior along the element length. 

This chapter proposes a novel framework to combine an advanced nonlinear 

Bayesian filtering technique, referred to as the unscented Kalman filter (UKF) (Julier and 

Uhlmann 1997, Wan and van der Merwe 2000), and state-of-the-art mechanics-based FE 

models for frame-type structures, for the identification of nonlinear (hysteretic) 

structures. The proposed framework aims to fill the gap between advances in the 
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subfields of SHM and nonlinear mechanics-based FE modeling of civil structures. This 

scheme allows updating the nonlinear FE models using the UKF by recursively 

processing measured input-output records from the structure of interest. To implement 

this framework, the open-source object-oriented software framework OpenSees (Mazzoni 

et al. 2005) is used to model the structure and simulate its response to dynamic loads. 

OpenSees is interfaced with Matlab (2012) to interact recursively with the Bayesian 

filtering technique programmed in the Matlab environment. Although in this chapter the 

proposed framework is applied to frame-type structures with distributed plasticity, it is 

applicable to any nonlinear finite element model defined by time-invariant material 

parameters, and it can be used with measured input-output data under static, quasi-static, 

or dynamic loads. 

7.2. Bayesian approach for state and parameter estimation of dynamic systems  

A nonlinear discrete-time state-space model of a dynamical system can be defined 

by a state transition (also called system or process) equation 

 ( )1 1 1 1, ,k k k k k− − − −=x f x u w  (7.1) 

and a measurement (or observation) equation 

 ( ), ,k k k k k=y h x u v  (7.2) 

where nx
k ∈x  , nu

k ∈u  , and ny
k ∈y   are the state vector (defined as the smallest 

subset of variables needed to completely characterize the system at time kt k t= ∆ , where 

t∆  = time step), input vector (deterministic and known), and measurement vector at time 
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kt , respectively. The process noise nw
k ∈w   accounts for modeling uncertainties and 

unmeasured random disturbances exciting the system; nv
k ∈v   is the measurement 

noise; the components of kw  and kv  are assumed to be statistically independent 

processes. The terms 1k−f  and kh  are deterministic and known nonlinear vector-valued 

functions, linking the prior state ( 1k−x ) to the current state ( kx ), and the current state to 

the current measurement ( ky ), respectively. The goal of a nonlinear filtering technique is 

to recursively estimate at least the first two statistical moments of the state vector, kx , 

using the measured input and noisy measurement vectors up to the current time, 1:ku  and 

1:ky , respectively (Haug 2005). For the case of joint (state and parameter) estimation, kx  

is augmented to contain both state variables and unknown parameters ( kθ ). If the 

measurement equation contains the system dynamics, the estimation problem becomes a 

parameter estimation problem (Haykin 2001), and only kθ  is present in the state 

equation. For the sake of simplicity, the Bayesian approach presented below considers the 

system state kx  as the variable to be identified, but it is also valid for joint (state and 

parameter) as well as parameter-only estimation problems. This issue will be discussed in 

more detail later in the chapter. 

 From a Bayesian viewpoint, the recursive nonlinear filtering problem consists of 

computing the posterior probability density function (PDF) of kx  given the input and 

measurements up to time kt  ( { }1: 1 2k ku u u u   and { }1: 1 2k ky y y y  , 

respectively), i.e., to compute ( )1: 1:,k k kp x y u . Besides, the PDFs of the initial state 
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vector, ( ) ( )0 0 0 0,p p≡x y u x , process noise, ( )kp w , and measurement noise, ( )kp v , 

are assumed to be known. Because of the deterministic nature of the input vector ku  and 

for the sake of notation simplicity, dependence on ku  will be dropped in this section. 

 Assuming that the posterior PDF at time 1kt − , ( )1 1: 1k kp − −x y , is known, the 

posterior PDF at time kt , ( )1:k kp x y , can be obtained through a Bayesian prediction-

correction scheme. The prediction step propagates the PDF of the state from time 1kt −  to 

time kt  via the Chapman-Kolmogorov equation (Arulampalam et al. 2002) as 

 ( ) ( ) ( )1: 1 1 1 1: 1 1k k k k k k kp p p d− − − − −= ∫x y x x x y x  (7.3) 

From Equation (7.1) which describes kx  as a first-order Markov process, it 

follows that ( ) ( )1 1: 1 1,k k k k kp p− − −=x x y x x . The PDF ( )1k kp −x x  is determined based 

on Equation (7.1) and the PDF of the process noise, ( )kp w . The correction step 

computes the posterior PDF ( )1:k kp x y  updating the prior PDF obtained in Equation 

(7.3), by assimilating the measurement ky  through the Bayes' theorem (Arulampalam et 

al. 2002) as 

 ( ) ( ) ( )
( )

( ) ( )
( ) ( )

1: 1 1: 1 1: 1
1:

1: 1 1: 1

,k k k k k k k k k
k k

k k k k k k k

p p p p
p

p p p d
− − −

− −

= =
∫

y x y x y y x x y
x y

y y y x x y x
 (7.4) 

where the conditional PDF ( )k kp y x  is the likelihood function and is obtained using 

Equation (7.2) and the PDF of the measurement noise, ( )kp v ; ( )1: 1k kp −y y  is a 
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normalization constant which depends on ( )k kp y x ; and ( )1: 1k kp −x y  is the prior PDF 

computed in Equation (7.3). Knowledge of ( )1:k kp x y  allows obtaining a point estimate 

of the state kx  and a measure of the uncertainty in this state estimate. 

 Equations (7.3) and (7.4) define a conceptual scheme to recursively compute the 

exact Bayesian solution for the state, kx , of the state-space model defined in Equations 

(7.1) and (7.2).  However, the multidimensional integrals in Equations (7.3) and (7.4) in 

general cannot be solved in closed-form, and approximate or suboptimal solutions need 

to be adopted. One of these suboptimal solutions is the UKF, which was first introduced 

by Julier and Uhlmann (1997) and is presented in the following section. 

7.3. The unscented Kalman filter (UKF) 

 Consider the state transition equation, Equation (7.1), and the measurement 

equation, Equation (7.2), in the case of additive Gaussian white noises: 

 ( )1 1 1 1,k k k k k− − − −= +x f x u w  (7.5) 

 ( ),k k k k k= +y h x u v  (7.6) 

where kw  and kv  are zero-mean, Gaussian, white, random vectors with covariance 

matrices kQ  and kR , respectively. The initial state 0x  (before any measurements are 

available) is also modeled as a Gaussian random vector, independent of the noises, with 

estimated mean 0x̂  and estimated covariance matrix 0
ˆ xxP . 

 It is now assumed that the posterior PDF of the state at time 1kt −  can be 

approximated by a Gaussian distribution: 
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 ( ) ( )1 1: 1 1 1 1 1 1
ˆˆ; ,k k k k k k kp − − − − − − −= xxx y x x PN  (7.7) 

where ( )1 1 1 1 1
ˆˆ; ,k k k k k− − − − −

xxx x PN  represents a multivariate Gaussian distribution with the 

components of 1k−x  as random variables; and 1 1ˆ k k− −x  and 1 1
ˆ

k k− −
xxP  denote the posterior 

mean and posterior covariance matrix of 1k−x  given 1: 1k−y . Using Equations (7.3), (7.5), 

and (7.7), the following relations are obtained: 

 ( ) ( )1 1 1 11 1 1 1 1
ˆˆ ˆ, ; ,k k k k kk k k k k k d− − − −− − − − −= ∫ xxx f x u x x P xN  (7.8) 

 
( ) ( ) ( )1 1 1 1 1 11 1 1 1 1

11 1

ˆˆ, , ; ,

ˆ ˆ

T
k k k k k k k kk k k k k k

T
kk k k k

d− − − − − −− − − − −

−− −

=

− +

∫xx xxP f x u f x u x x P x

x x Q

N
 (7.9) 

Now, considering a Gaussian approximation for ( )1: 1k kp −x y , it follows that 

 ( ) ( )1: 1 1 1
ˆˆ; ,k k k k k k kp − − −= xxx y x x PN  (7.10) 

The mean and covariance matrix of ky  given 1: 1k−y  can be derived using Equations (7.6) 

and (7.10) as 

 ( ) ( )1 1 1
ˆˆ ˆ, ; ,k k k k kk k k k k k d− − −= ∫ xxy h x u x x P xN  (7.11) 

 ( ) ( ) ( )1 1 1 11
ˆˆ ˆ ˆ, , ; ,T T

k k k k k k k k kk k k k k k k kk k d− − − −− = − +∫yy xxP h x u h x u x x P x y y RN  (7.12) 

Similarly, the cross-covariance matrix of kx  and ky  given 1: 1k−y , 1k k−
xyP , can be obtained 

as 

 ( ) ( )1 1 1 11
ˆˆ ˆ ˆ, ; ,T T

k k k k k kk k k k k k k kk k d− − − −− = −∫xy xxP x h x u x x P x x yN  (7.13) 

 Since the Kalman filter (Kalman 1960, Kalman and Bucy 1961) is applicable to 

nonlinear state-space models for which ( )1 1: 1k kp − −x y  is approximated as Gaussian, as 
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stated in Equation (7.7), and the process and measurement equations have additive 

Gaussian white noises, the Kalman filter can be used to construct a Gaussian 

approximation of the posterior PDF of kx  given 1: 1k−y  with mean and covariance matrix 

obtained as (Haug 2005) 

 ( )1 1ˆ ˆ ˆk kk k k k k k− −= + −x x K y y  (7.14) 

 1 1
ˆ ˆ ˆ T

k kk k k k k k− −= −xx xx yyP P K P K  (7.15) 

where the Kalman gain matrix kK  is defined as 

 ( ) 1

1 1
ˆ ˆ

k k k k k

−

− −= xy yyK P P  (7.16) 

 To solve for the posterior mean and covariance matrix given in Equations (7.14) 

and (7.15), integrals of the form ( ) ( ) ( )ˆˆ; ,E d=   ∫ xxg x g x x x P xN  must be solved in 

Equations (7.8), (7.9), and (7.11)–(7.13). To this end, the unscented transformation (UT) 

is used. The UT represents a random vector z  by a set of deterministically chosen sample 

points (referred to as sigma points or SPs) such that the sample mean and sample 

covariance matrix obtained from the SPs match exactly the true mean and covariance 

matrix of the random vector z . When the SPs are propagated through a nonlinear 

(vector) function, they capture the true mean and covariance matrix up to the second 

order of the Taylor series expansion of the nonlinear function (third order of the Taylor 

series expansion for a Gaussian random vector z ) (Wan and van der Merwe 2000). 

Different UTs have been proposed in the literature (see Simon 2006, for further details). 

The scaled UT (Wan and der Merwe 2000) is adopted herein. 
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7.3.1.  The scaled unscented transformation 

 Consider a random vector nz∈z  (Gaussian or non-Gaussian) with mean zµ  and 

covariance matrix P   that undergoes a nonlinear transformation ( )=s g z . To estimate 

the mean vector and covariance matrix of s , the scaled UT defines the following 

( )2 1zn +  SPs, denoted by ( )iZ , such that their sample mean and sample covariance 

matrix equal the true mean and true covariance matrix of z , respectively: 

 

( )

( ) ( )
( ) ( )

0                              (mean value)

         = 1, ...,

     = 1, ..., 2
z

T
i

zi
T

i
z zi n

γ i n

γ i n n
−

=

 = +   

 = − +  

z

z

z

μ

μ P

μ P

Z

Z

Z

 (7.17) 

where P = square-root of the covariance matrix P , ( )i  represents the ith row of the 

matrix inside the parentheses, z= n +γ λ , ( )2
z zn n= + −λ α κ , -410 ,1 ∈  α is a 

constant related to the spread of the SPs around the mean zµ , and κ  is a secondary 

scaling parameter. The SPs are then propagated through the nonlinear transformation to 

estimate the mean and covariance matrix of ( )=s g z  as 

 ( ) ( )( )
2

0

ˆ
nz

i i
m

i
W

=

≈ = ∑sμ s g Z  (7.18) 

 ( ) ( )( ) ( )( )
2

c
0

ˆ ˆ ˆ
nz T

i i i

i
W

=

   ≈ = − −      ∑ss ssP P g s g sZ Z  (7.19) 

where the weight coefficients of the SPs to estimate the mean and covariance matrix of s

, ( )i
mW  and ( )i

cW  respectively, are 
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( ) ( ) ( ) ( ) ( )
( )

0 0 1  1    , = 1, ..., 2
2

i i2
m c m c z

z z z

λ λW ; W α β ; W W i n
n λ n λ n λ

= = + − + = =
+ + +



 (7.20) 

in which β  = scaling factor used to emphasize the relative weight of SP ( )0Z  in the 

calculation of ˆ ssP , which can be utilized to minimize certain higher-order error terms 

based on known higher-order moments of z  (van der Merwe et al. 2004). The UKF 

algorithm uses the scaled UT to solve the recursive estimation problem defined by 

Equations (7.14) and (7.15), as shown in Figure 7.1. In this study, the parameters of the 

scaled UT are chosen as 0.01=α , 0=κ , and 2=β  as recommended by Wan and der 

Merwe (2000). 

 
Figure 7.1: Flow chart of the Unscented Kalman Filter for the state-space model defined 

by Equations (7.5) and (7.6). (adapted from Lee 2005). 
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7.4. Distributed plasticity finite element models of frame-type structures 

Over the years, several approaches have been developed to model frame-type 

structures and simulate their nonlinear response behavior under earthquake excitation. 

These methods can be classified in three main categories (Taucer et al. 1991): (i) global 

models, (ii) structural FE models, and (iii) continuum FE models (Figure 7.2). Global 

models, the simplest among the three, concentrate material nonlinearities at global DOFs 

(e.g., each story of a building is represented by a hysteretic rule for the story shear force - 

interstory drift relation), but lack accuracy and resolution in predicting the nonlinear 

response of real structures. Also, they require significant work from the user to calibrate 

the force-deformation  rule at each nonlinear DOF. Structural FE models characterize the 

structure by an assembly of interconnected frame elements. Structural FE models can be 

further categorized into: (a) lumped or concentrated plasticity (usually located at the end 

of the beam-column elements), and (b) distributed plasticity (along the element and over 

the element cross-section). Continuum FE models are the most sophisticated and 

computationally expensive, since they discretize the beams and columns of frame-type 

structures into 3D solid finite elements with 3D nonlinear material constitutive models. 

 
Figure 7.2: Types of models of frame elements (adapted from Deierlein et al. 2010) 
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 Because of their accuracy in matching experimental results, formulation 

simplicity, and computational feasibility and efficiency, frame-type FE models with 

distributed plasticity (Figure 7.2 and Figure 7.3) are widely used in research and 

engineering practice. In this type of FE models, material nonlinearity can occur at any 

numerically monitored cross-section (also called element integration point or IP) along 

the element, and the element behavior is obtained by numerically integrating the section 

response behavior along the element. Discretization of the element cross-section into 

longitudinal fibers allows to simulate the section nonlinear response behavior using 

uniaxial material constitutive laws for the fibers. This formulation accounts for the 

interaction between bending and axial force at the section level, while the interaction with 

the shear force occurs at the element level through equilibrium. It is noted that a uniaxial 

material model depends on physical properties (or parameters) of the corresponding 

material. 

 
Figure 7.3: Hierarchical levels in distributed plasticity FE models of frame-type 
structures. 



www.manaraa.com

252 
 

 There are two main formulations at the element level (Figure 7.3) for distributed 

plasticity using fiber section discretization: (i) displacement-based (DB) and (ii) force-

based (FB). In the former, interpolation functions (cubic Hermitian polynomials) 

approximate the displacement field along the element as a function of the nodal 

displacements. To achieve an accurate approximation of the exact response, many 

(usually 4 to 8) elements per member (beam, column) need to be used. On the other hand, 

force-based elements use equilibrium to interpolate exactly the internal force fields along 

the element as a function of the nodal forces. Because force-based elements are exact 

within the framework of classical beam theories, only one element per frame (beam or 

column) member is required (Taucer et al. 1991). 

 After direct stiffness assembly of the distributed plasticity beam-column elements 

with section fiber discretization (Figure 7.3), the equations of dynamic equilibrium at the 

structure level can be expressed as 

 ( ) ( ) ( ) ( ) ( ) ( ), , , , ,t t t t t+ + =  M θ q θ C θ q θ r q θ θ p   (7.21) 

where t  = time, M  = mass matrix, C  = damping matrix, r  = internal (inelastic) resisting 

force vector, p  = applied external force vector, q , q , q  = nodal displacement, velocity, 

and acceleration response vectors, and θ  = vector of time-invariant material parameters 

and/or other parameters defining the mass and damping matrices. In the case of rigid base 

excitation (e.g., earthquakes), the load vector takes the form ( ) ( )gt u t= −p M 
  where   

and ( )gu t  are the influence vector and input ground acceleration, respectively. Equation 

(7.21) is integrated numerically in time using a time-stepping method, such as the 

Newmark-β method (Chopra 2011), yielding a set of coupled nonlinear algebraic 
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equations to be solved for ( )1 1,k kt+ +=q q θ  at time ( )1 1kt k t+ = + ∆ . Considering that θ  is 

a time-invariant parameter vector, the set of coupled nonlinear algebraic equations can be 

written as 

 ( )
( ) ( ) ( )1 1 1 1 12k k k k k

1
tt

+ + + + +

 α
= −  + +  =

β ∆ β ∆ 
Ψ q p Mq Cq r q 0  (7.22) 

in which 

( ) ( )

( ) ( )

1 1 2
1 1 11

2

1 1
2

k k k k k

k k k

tt

t
t

+ +

  
= +  + − −  β ∆ β β ∆   

    α α α
+ − − − ∆ −    β ∆ β β    

p p M q q q

C q q q

  

 

 (7.23) 

where α  and β  = parameters controlling the accuracy and stability of the Newmark-

β time stepping scheme, t∆  = time integration step, and the subscript k or k+1 indicates 

that the corresponding quantity is evaluated at discrete time k t∆  or ( )1k t+ ∆ , 

respectively. 

 Equation (7.22) can be solved using a numerical scheme such as the Newton-

Raphson incremental-iterative algorithm, which requires the derivative of the dynamic 

unbalance force vector 1k+Ψ  with respect to 1k+q : 

 
( )

( ) ( ) ( )( ) ( )( )1
T 1 T 1

1

k stat dyn
k k2

k i i
i tt

+
+ +

+

 ∂ α
= −  + +  = −

∂ β ∆ β ∆ 

Ψ q M C K q K q
q

 (7.24) 

where ( ) ( )1
T 1

1

kstat
k

k

+
+

+

∂
=

∂
r q

K q
q

is the static consistent tangent stiffness matrix of the 

structure at the ( )1+k -th  time step and ( ) i  represents the iteration number in the 
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Newton-Rhapson algorithm until convergence is satisfied according to a specified 

displacement, force, or energy criterion. 

 Considering distributed plasticity DB elements with section fiber discretization to 

model the members of the frame-type structure, the resisting force vector, r , and the 

static consistent tangent stiffness matrix of the structure, T
statK , can be computed, 

respectively, as 

 ( ) ( ){ } ( ) ( )1 1 11 1 1 1

NNN N fibIPel el TT h
k e k h i i k i he e h i

A w+ + += = = =

   = = σ  
    

Α Α ∑ ∑r q p q B a q  (7.25) 

   ( ) ( ){ } ( ) ( )( )T 1 T 1 T, 11 1 1 1

NNN fibN IPel el Tstat e T h h
k k h i i k i i h he e h i

E A w+ + += = = =

   = =   
    

Α Α ∑ ∑K q K q B a q a B  (7.26) 

where Α= finite element assembly operator, ep = element end forces, elN = number of 

frame finite elements in the FE model of the structure, IPN = number of integration 

points along the element, ( )h x=B ND  where D  is a differential operator matrix and 

( )xN = displacement shape function matrix evaluated at the section located at local 

coordinate x along the element length, fibN = number of fibers in the cross-section h, h
ia = 

kinematic vector defining the location of fiber i in cross-section h, iσ = axial stress in 

fiber i, iA = area of fiber i, hw = weight of IP number h, and T,
i

i
i

E ∂σ
=

∂ε
= tangent modulus 

of fiber i, where iε  = axial strain in fiber i. Therefore, r  and stat
TK  depend on the axial 

stress and tangent modulus of each fiber, respectively, which are defined by the nonlinear 

uniaxial material constitutive law assigned to the fiber. It is important to note that a 
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structural system is typically composed of a relatively small number of structural 

materials with different nominal parameter values, each of which is represented by a 

single nonlinear uniaxial material model. Consequently, if all components of a structure 

are made of the same material, only one uniaxial material model is needed to describe the 

nonlinear behavior of all fibers in the FE model of the structure. 

In the case of FB beam-column elements, an iterative algorithm at the element 

level is needed to compute, using numerical integration, the element end forces ep  and 

element tangent flexibility matrix T
eF , from which the element tangent stiffness matrix 

T
eK  can be obtained. In the FB element formulation, equilibrium is satisfied in strong 

form, while compatibility is satisfied in weak form through the principle of virtual forces 

(Taucer et al. 1991). In both formulations (DB and FB), the static tangent stiffness matrix 

of the structure, T
statK , and resisting force vector, r , both depend on the time-invariant 

material parameters governing the uniaxial material constitutive laws assigned to the 

fibers. 

7.5. Proposed framework 

To formulate the equation of dynamic equilibrium of a nonlinear hysteretic 

(history dependent) structural FE model as a state equation (first-order matrix differential 

equation), all the unobserved (unmeasured) history dependent variables (at the material 

level) of the FE model must be included in the state vector ( x ). For frame-type FE 

models using fiber discretization of the element cross-section, in addition to the 

unobserved nodal displacements and velocities of the structure (q  and q , respectively), 
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all the history dependent variables of each fiber of each monitored cross-section (stress 

and material history variables of the fiber material model used) need to be included in the 

state vector. If the unknown time-invariant parameters of the material models used (θ ) 

also need to be estimated, the state vector x  must be augmented with these parameters 

into the augmented state vector, 
TTT

a
 =   

x x θ . Then, unobserved state variables and 

unknown material parameters can be estimated simultaneously (joint estimation problem) 

using the UKF. 

When using frame FE models with section fiber discretization, the total number of 

fibers in the FE model is usually large; consequently, it is not feasible to tackle the joint 

estimation problem. In addition, if the estimation problem is formulated to obtain ax  at 

time 1kt +  using ax  at time kt , equilibrium is violated because of the dependence of the 

FE response on the primary material parameters to be identified (i.e., when primary 

material parameters are changed at a specific time step as part of the recursive estimation 

process, the response of the structure has to be re-run from time zero at the next time 

step). However, extensive research in the field of nonlinear modeling and analysis of 

structures has shown that adequate mechanics-based FE models can predict with 

reasonable accuracy the actual response of structures if realistic and well calibrated 

material constitutive models are used (e.g., Uriz et al. 2008,  Martinelli and Filippou 

2009, Koutromanos et al. 2011, Ebrahimian et al. 2014). Therefore, relying on the FE 

model developed for a given frame-type structure, the estimation of the states variables 

can be omitted, since they can be obtained as output of the FE model with identified 

unknown parameters. As a result, a parameter estimation problem, in which only the 
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unknown time-invariant material model parameters are considered in the state equation, 

can be formulated instead of a joint (state-parameter) estimation problem. 

Estimation of time-invariant material parameters is possible because the time-

invariant parameters describing the uniaxial material model uniquely define the nonlinear 

response of the structure, including stiffness degradation and strength deterioration, for a 

given input motion. Indeed, the nonlinear stress response σ  at the fiber level is governed 

by the corresponding nonlinear uniaxial material constitutive law, and depends on the 

strain history ε  in the fiber and on the material parameters θ , i.e., ( )( ),σ = σ ε θ θ . 

Furthermore, the equation of motion of the structure is embedded in the measurement 

equation through the FE model, i.e., the measurement equation contains all the system 

dynamics. On the other hand, any desired structural response variable can be obtained 

from the FE model. Hence, only the response quantities corresponding to the measured 

responses are extracted from the FE model to construct the measurement equation. 

 Based on the previous remarks, the state-space model defined by Equations (7.5) 

and (7.6) in the present case reduces to 

 ( )
1

1:,
k k k

k k k k k

+ = +
 = +

θ θ w

y h θ u v
 (7.27) 

where n
k ∈θ 

θ = vector of unknown material parameters to be identified, 

( )~ ,n
k k∈w 0 Q

θ N = process noise vector at time kt  assumed to be white and 

Gaussian with zero mean and covariance matrix kQ , ny
k ∈y  = measurement vector at 

time kt , ( )1:,k k kh θ u = vector of observed outputs (or measured response quantities) 
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obtained from the nonlinear FE model characterized by material parameters kθ  and 

subjected to the deterministic input vector from time 1t  to kt , 1:ku , and 

( )~ ,ny
k k∈v 0 R N = measurement noise vector at time kt  assumed to be white and 

Gaussian with zero mean and covariance matrix kR . The process and measurement noise 

vectors, kw  and kv , and the initial material parameter estimate, 0θ̂ ,  also modeled as a 

Gaussian random vector with mean 0θ̂  and covariance matrix 0
ˆ θθP , are assumed to be 

statistically independent. In Equation (7.27), kθ  corresponds to a stationary process 

driven by the noise process kw . It is noted that the presented formulation does not take 

into account the effects of hidden or unmeasured input random excitations, and the 

measurement noise is modeled as a Gaussian white noise vector process uncorrelated at 

different times and across different output channels. 

 The proposed approach to formulate the identification problem of nonlinear 

frame-type structures is convenient and practical, because only one set of material 

parameters for each material present in the structure needs to be considered in θ , and any 

measured response can be easily considered in the measurement equation (e.g., 

acceleration, velocity, displacement, local deformation, strain, etc.). 

The UKF with scaled UT is proposed for the identification process, because it is a 

good compromise between accuracy, since it does not involve linearization of the 

nonlinear FE model as the EKF (Simon 2006), and computational feasibility, because it 

only requires generating ( )2 1nθ +  SPs, which is also equal to the number of runs of the 

FE model, at each time step. This last comment on computational cost represents a 
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significant advantage of the UKF compared to the computationally more demanding 

Particle Filter, also called Monte Carlo filter (Ristic et al. 2004). In the Particle Filter, a 

large number of samples (or particles) need to be considered to yield accurate results for 

highly nonlinear problems (Ristic et al. 2004). Furthermore, the UKF lends itself to 

parallel or distributed computations at each time step when running the nonlinear FE 

models corresponding to the different SPs. Figure 7.4 summarizes the proposed 

framework, including the interaction between the UKF, coded in Matlab, and the 

nonlinear FE model, which is developed in the object-oriented OpenSees platform. 

 
Figure 7.4: Flow chart of the UKF algorithm combined with FE model simulations for 
material parameter estimation. 

7.6. Applications using simulated seismic response data 
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frame. In both structures, the steel fibers are modeled using the modified Giuffre-

Menegotto-Pinto (G-M-P) material constitutive model (Filippou et al. 1983). A suite of 

nine actual earthquake motions are used as input motions to obtain simulated recorded 

data, which are then contaminated by measurement noise. In both application examples, 

the gravity loads are applied quasi-statically before running a time-history dynamic 

analysis for each input earthquake ground motion considered. The Newmark-β average 

acceleration method is employed to integrate the equations of motion in time using a time 

step 1 st f=∆ , where sf  is the sampling rate of the input earthquake motion (see Table 

7.1). The Newton algorithm is used to iteratively solve the set of coupled nonlinear 

algebraic equations resulting from the equations of motion. The framework presented 

above is used to identify the material parameters and update the nonlinear finite element 

model in each example. It is important to note that for both application examples, the 

same FE model is employed to simulate the response and to estimate the material 

parameters; therefore, the effects of modeling uncertainty is not considered here. All 

analyses were performed using a desktop workstation with an Intel Xeon 2.66 GHz 

processor and 48GB RAM. 

7.6.1. Input earthquake motions 

Nine actual earthquake ground motions recorded during the Loma Prieta 1989 

(Mw=6.9) and Northridge 1994 (Mw=6.7) earthquakes are selected as input motions for 

both frame-type structures considered in this study. The seismic input motions are chosen 

such that the structural response ranges from linear to highly nonlinear. This enables 

studying the level of structural response required to reliably identify the different 
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parameters (stiffness, strength, and post-yield related) associated with the uniaxial 

material model(s) used for the steel fibers. Table 7.1 summarizes the main characteristics 

of the earthquake input motions and their acceleration time histories are shown in Figure 

7.5. 

Table 7.1: Earthquake motions. 

ID Station Comp. Earthquake PGA Epicentral  PDR (%) 
(g) distance (km) Column Frame 

EQ1 Los Gatos 0 1989 Loma Prieta 0.45 20.6 5.02 4.31 

EQ2 14145 Mulholland Dr. N09E 1994 Northridge 0.44 12.7 3.14 2.38 

EQ3 Tarzana 90 1994 Northridge 1.78 5.5 2.83 1.94 

EQ4 Corralitos 90 1989 Loma Prieta 0.48 7.1 2.49 1.33 

EQ5 6334 Katherine Rd. N90E 1994 Northridge 0.51 13.0 1.97 1.16 

EQ6 Capitola - Fire Station 90 1989 Loma Prieta 0.40 9.4 1.43 0.91 

EQ7 3036 Fletcher Dr. S54W 1994 Northridge 0.25 29.3 1.41 0.44 

EQ8 600 E. Grand Ave. S90W 1994 Northridge 0.24 43.3 0.64 0.59 

EQ9 Wrightwood – Nielson 90 1994 Northridge 0.04 92.4 0.14 0.13 

Note: PDR = Peak Drift Ratio (peak horizontal relative displacement of the top of the structure normalized 
by the height of the structure). fs = 50 Hz for motions EQ1 to EQ8 and fs = 100 Hz for motion EQ9. 

 
Figure 7.5: Acceleration time histories of the seismic input motions. 
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7.6.2. Modified Giuffre-Menegotto-Pinto (G-M-P) constitutive model 

The modified G-M-P material constitutive model, originally proposed by 

Menegotto and Pinto (1973) and modified by Filippou et al. (1983) to account for 

isotropic hardening, has been used extensively and successfully to describe the nonlinear 

response of both structural steel (e.g., Ayoub and Filippou 2000, Uriz et al. 2008) and 

reinforcing steel (e.g., Filippou et al. 1983, Taucer et al. 1991). The G-M-P model is 

governed by physical parameters of the material as well as empirical parameters fitted to 

experimental data, and is commonly used in state-of-the-art modeling and simulation of 

civil structures. 

 The G-M-P model is a smooth material constitutive law (see Figure 7.3) governed 

by ten constant (i.e., time-invariant) material parameters and material history variables 

that are updated at each strain reversal and depend on the material parameters and certain 

features/metrics of the history of deformation (e.g., maximum plastic strain). The ten 

material parameters can be classified into four primary parameters controlling the 

monotonic stress-strain curve (or back-bone curve) and six secondary parameters 

controlling the evolution of the cyclic stress-strain behavior, specifically the curvature of 

the elastic-to-plastic transition curve and the isotropic hardening for each branch of the 

hysteresis loops produced by the stress-strain cycles. In the proof-of-concept examples 

presented here, without loss of generality, only the four primary material parameters are 

considered as unknown and estimated using unscented Kalman filtering. These four 

parameters are (see Figure 7.3): elastic Young’s modulus ( 0E ), initial yield stress ( yσ ), 

strain hardening ratio (b), and a parameter ( 0R ) describing the curvature of the transition 
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curve between the asymptotes of the elastic and plastic branches during the first loading. 

Further details about the G-M-P model can be found in Filippou et al. (1983). 

7.6.3. Steel cantilever bridge column 

A cantilever steel column of height 6.0 m representing a bridge pier is modeled 

using 17 DB beam-column elements. The bottom 2.5 m is discretized into 10 DB 

elements, each with a length of 0.25 m and 5 Gauss-Lobatto IPs along its length, while 

the top 3.5 m is discretized into 7 DB elements, each with a length of 0.5 m and 3 Gauss-

Lobatto IPs along its length (Figure 7.6a). The cross section of the column consists of a 

built-up box-shaped section of steel ASTM A36. The dimensions of the cross section are 

550 mm 550 mm 20 mm× × , meeting the highly ductile member requirements of the 

AISC code (AISC 2010). This design avoids local and lateral-torsional buckling and 

allows to attain the fully plastic capacity of the cross section. Each of the two webs of the 

section is discretized into 36 fibers along its length and one fiber along its width, while 

each flange of the section is represented by a single fiber (Figure 7.6b). The uniaxial G-

M-P material model with parameters 

{ } { }, , , 200GPa , 250MPa , 0.1 ,18
T Ttrue true true true true

0 y 0E b R= σ =θ  is used to model the 

steel fibers and simulate the column response. A lumped mass M = 80 kN∙s2/m, 

representing dead and live loads on the bridge over the tributary area of the column, is 

considered at the top of the column (Figure 7.6a). The effects of nonlinear geometry are 

accounted for by using the P-Delta approximation (Filippou and Fenves 2004). The 

damping properties representing sources of energy dissipation beyond the hysteretic 
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energy dissipated through inelastic material behavior are modeled using tangent stiffness-

proportional Rayleigh damping (based on the tangent stiffness matrix at the last 

converged step of analysis) for a critical damping ratio of 2% at the first (fundamental) 

mode. An “elastic” fundamental period of the column of T1 = 0.77 sec was obtained from 

eigenanalysis based on the tangent stiffness of the structure after static application of the 

gravity loads. This cantilever bridge column model is used to simulate the transverse 

bridge response due to seismic base excitation. 

 
Figure 7.6: Steel cantilever bridge column: (a) general geometry and FE discretization, 
(b) cross section fiber discretization. 

In the identification phase, the UKF algorithm requires 9 SPs ( )2 4 1= × + , and it 

is assumed that only the horizontal acceleration response of the top mass M is measured. 

The initial estimates of the parameters are taken as 70% of their true values, 

{ }0
ˆ 0.7 140GPa ,175MPa , 0.07 ,12.6 Ttrue= =θ θ , and the initial covariance matrix 



www.manaraa.com

265 
 

estimate 0P̂θθ  is assumed to be diagonal with terms computed assuming a coefficient of 

variation (of the initial values 0θ ) of 15% for yσ  and 0E , and 25% for b and 0R . To 

study the robustness of the identification process to the measurement noise, the case of a 

zero-mean Gaussian white noise process with 5% root mean square (RMS) noise-to-

signal-ratio (NSR) superimposed on the simulated acceleration response is considered in 

addition to the base case of noise-free simulated measurement. It is noted that the 

measurement noise is added after completion of the structural response simulation and 

because the noise level depends on the total length (including initial and final tails) and 

time-dependent amplitude modulation function of the corresponding response time 

history, the value of the RMS NSR cannot be interpreted in a general sense as in the case 

of stationary signals. It is assumed that the process noises kr  and measurement noise vk , 

see Equation (7.27),  are statistically independent zero-mean Gaussian white noise 

processes with time-invariant diagonal covariance matrices Q  and R , respectively. A 

coefficient of variation of 31 10−×  is assumed for the initial estimates of the material 

parameters ( 0θ ) to construct the process noise covariance matrix Q  for both 

measurement noise levels (0 and 5% RMS NSR). A standard deviation (or RMS) of the 

measurement noise vk  of 21 10−×  and 27 10−×  of the RMS of the corresponding 

measurement (horizontal acceleration at top of column) is assumed in the measurement 

noise covariance matrix R  for the actual measurement noise levels 0 and 5% RMS NSR, 

respectively. It is important to note that, in this problem, the statistics of the simulated 

measurement noise are known from the assumed RMS NSR. However, when data is 

recorded in real structures, the variances of the measurement noises are unknown, and 
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need to be estimated based on the noise sources, experience and engineering judgment. 

Thus, to mimic real-world applications, in this problem R  is not considered equal to the 

actual statistics of the simulated measurement noise processes. 

 The quantities 0θ̂ , 0P̂θθ , Q , and R  affect the performance and convergence rate 

of the parameter estimation process (Haykin 2001, Simon 2006). Studying the effect of 

0θ̂ , 0P̂θθ , Q , R , and scaled UT variables on the convergence and performance of the 

parameter estimation is not in the scope of this chapter, but will be the topic of future 

investigations. 

 For all nine seismic inputs considered and for the two levels (0% and 5% RMS 

NSR) of measurement noise, Table 7.2 reports the final estimated values of the four 

primary parameters of the G-M-P material constitutive law used to model all steel fibers 

of the column. From Table 7.2 and Figure 7.7 (for EQ3), it is observed that the final 

parameters estimates are stable and converged to the true parameter values. The UKF is 

able to estimate successfully the G-M-P material parameters from the input-output data 

for seismic inputs EQ1 to EQ7, which induce a peak drift ratio (PDR) larger than or equal 

to 1.4% (see Table 7.1). It is noteworthy that the cantilever column experiences a 

moderately nonlinear global response for EQ5 to EQ7 (1.41% ≤ PDR ≤ 1.97%); and the 

extreme fibers at the base of the column respond in the nonlinear range during the strong 

motion part of these earthquakes. This level of nonlinearity in the response allows to 

estimate correctly the parameters associated to the nonlinear parts (or strength related 

parameters) of the G-M-P model ( yσ , b, 0R ). For EQ8, parameters 0E , yσ , and 0R  are 

properly estimated, while the initial value of b (0.07) is not modified by the filtering 
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process, because the response in the nonlinear range is limited; consequently, the 

structural response measurements do not contain enough information to update the initial 

estimate of the strain hardening ratio. Since EQ9 produces a very low excitation (PDR = 

0.14%), the response of the column is quasi-linear and no yielding occurs. This implies 

that only the stiffness related material parameter 0E  is identified, while the time-histories 

of the strength and post-yield related parameters yσ ,  b,  and 0R  remain essentially 

unchanged from their initial estimates. 

Table 7.2: Final estimates of the G-M-P material constitutive model parameters for the 
bridge column. 

Parameter 
Noise 
level 
(%) 

 Estimation results 

EQ1 EQ2 EQ3 EQ4 EQ5 EQ6 EQ7 EQ8 EQ9 

true
0 0E E   

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
5 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 

true
y yσ σ  

0 1.00 1.02 1.00 1.01 1.01 1.00 1.02 1.01 0.70 
5 1.01 1.01 1.01 1.02 0.96 0.99 1.02 0.96 0.70 

trueb b  
0 1.00 1.00 0.99 1.02 1.00 1.00 0.95 0.71 0.70 
5 1.00 0.98 1.00 0.96 1.05 1.07 0.94 0.71 0.70 

true
0 0R R  

0 1.00 0.99 1.00 0.98 1.00 1.00 0.99 1.03 0.70 
5 1.00 1.00 1.01 1.00 1.08 1.00 1.03 1.03 0.70 

 Figure 7.7 shows the time histories of the mean ( µ̂ ) and standard deviation (σ̂ ) 

estimates of the identified G-M-P material parameters for EQ3. For the noise-free 

measurement case, parameter 0E  converges quickly to the true value after a few time 

steps, because it is related to the initial linear elastic stiffness, and from the first time step 

the measured response contains information about this parameter. Then, yσ  converges to 

the true value at around t = 5 sec, and parameters b  and 0R  converge to their true values 

at around t = 8 sec. After some steel fibers yield at the base of the column, the initial 
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yield stress yσ  is accurately estimated. Finally, more and larger excursions of an 

increasing number of fibers into the nonlinear range are needed to produce enough 

information in the measured response data to identify parameters b and 0R . Figure 7.7 

also shows that the parameter estimation results for 5% RMS NSR are also accurate, 

showing the robustness of the identification process to the measurement noise. The 

standard deviations as uncertainty measures of the identified material parameters 

decrease rapidly to zero as measured response data are progressively processed by the 

UKF. 

 
Figure 7.7: Estimation results for the primary G-M-P parameters for the steel cantilever 
bridge column subjected to EQ3. Left column: mean values / Right column: standard 
deviations. 

Figure 7.8 compares global and local responses of the column to EQ3 (with 5% 

RMS NSR) obtained based on the true material parameter values ( trueθ ), the initial 

parameter estimates ( 0θ̂ ), and final identified parameter estimates ( Nθ̂ ). These column 
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responses consist of: the absolute horizontal acceleration time history at the top of the 

column ( A ), the base shear (V ) versus drift ratio ( D ), the moment ( M ) versus curvature 

(κ ) at the column base section, and the stress (σ ) versus strain (ε ) at the extreme fiber of 

the column base section (see Figure 7.6b). It is observed that all the responses computed 

from the final estimated parameters are in excellent agreement with the corresponding 

true simulated responses. The successful updating of the nonlinear FE model is clear 

when comparing the responses obtained from the initial and final estimates of the 

material parameters with the corresponding true response. 

 
Figure 7.8: Comparison of true and estimated responses of the steel bridge column 
subjected to EQ3 with 5% RMS NSR: (a) absolute horizontal acceleration at the top, (b) 
base shear versus drift ratio, (c) moment versus curvature of the column base section, (d) 
stress versus strain in a extreme fiber at the base of the column. 

 To quantify the error in the time histories of the considered global and local 

responses for all seismic inputs, the relative RMS error measure defined as 
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is used, where true
kresp  and est

kresp  are the noiseless simulated true and the estimated 

response at time kt , respectively, and N denotes the total number of data points in the 

time histories. The estimated time histories can be obtained using: (i) the initial parameter 

values 0θ̂ , (ii) the estimated parameter values at each time step ˆ
kθ  to obtain the 

responses at time kt  by re-running the time history analysis from time zero to kt  (i.e., 

pseudo-online), or (iii) the final estimated parameter values Nθ̂ . The relative RMS errors 

for A , D , V , M , κ , σ , and ε  simulated based on 0θ̂  and Nθ̂  are reported in Table 7.3. 

The relative RMS error between the simulated true responses and corresponding 

responses obtained using the initial parameter values 0θ̂  varies in the range [48.5 − 

271.3]%. This indicates that the response time histories of the initial FE model (with 

material constitutive model parameters 0θ̂ ) are very different from the simulated true 

responses for all the global and local responses considered. When the final estimates of 

the material model parameters, Nθ̂ , are used to compute the responses, the relative RMS 

error varies in the range [0.1 − 2.9]% and [0.5 − 7.9]% for the cases of noise-free and 5% 

RMS NSR measurements, respectively. This illustrates the effectiveness, robustness, and 

accuracy of the material parameter estimation process in updating the nonlinear FE 

model. When the bridge column response time histories are computed using the material 
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model parameters identified at each time step (pseudo-online), similar results are 

obtained, with a relative RMS error varying in the range [0.1 − 5.8]% and [0.9 − 9.2]% 

for the cases of noise-free and 5% RMS NSR measurements, respectively. 

Table 7.3: Relative RMS error (in %) of the responses of the bridge column between the 
simulated true responses (true), responses obtained using the initial parameter estimates 
(initial), and responses obtained using the final parameter estimates (final). 

Motion Pair A  D  V  M  κ  σ  ε  

EQ1 
true / initial 67.8 147.3 77.7 78.5 129.4 78.4 141.6 

true / final 0.5 (0.8) 0.6 (0.9) 0.6 (0.9) 0.6 (0.9) 0.5 (0.8) 0.6 (0.9) 0.5 (0.7) 

EQ2 
true / initial 92.1 103.4 97.3 97.4 115.3 96.9 110.6 

true / final 2.4 (0.6) 2.5 (0.5) 2.5 (0.6) 2.5 (0.6) 2.5 (0.8) 2.5 (0.7) 2.6 (0.8) 

EQ3 
true / initial 48.5 137.4 93.2 93.4 167.2 91.9 108.7 

true / final 0.3 (4.0) 0.8 (5.7) 0.5 (7.6) 0.5 (7.6) 1.1 (5.2) 0.5 (7.7) 0.9 (4.2) 

EQ4 
true / initial 79.0 106.7 91.1 91.2 118.3 90.8 139.1 

true / final 1.0 (1.5) 2.0 (1.7) 1.1 (1.8) 1.1 (1.8) 2.3 (3.0) 1.1 (1.8) 2.9 (2.5) 

EQ5 
true /initial 89.3 216.7 121.0 121.7 271.3 119.6 176.6 

true / final 0.8 (2.7) 1.8 (7.9) 1.1 (3.5) 1.1 (3.6) 1.8 (5.6) 1.1 (3.8) 1.5 (4.1) 

EQ6 
true / initial 92.8 112.8 104.6 104.6 113.3 104.6 102.2 

true / final 0.4 (0.7) 0.5 (1.3) 0.5 (1.0) 0.5 (0.8) 0.5 (4.2) 0.5 (1.3) 0.5 (4.5) 

EQ7 
true / initial 82.7 93.5 92.4 92.5 87.0 92.7 71.6 

true / final 1.1 (2.0) 1.2 (2.3) 1.3 (2.2) 1.2 (2.2) 1.6 (4.4) 1.3 (2.3) 1.4 (4.2) 

EQ8 
true / initial 92.7 118.2 104.6 104.9 118.1 95.1 108.3 

true / final 0.1 (1.3) 0.1 (1.5) 0.1 (1.5) 0.1 (1.5) 0.2 (1.5) 0.4 (1.4) 0.2 (1.3) 

EQ9 
true / initial 131.9 178.2 142.7 143.5 178.0 65.1 89.3 

true / final 0.1 (3.1) 0.1 (3.4) 0.1 (3.4) 0.1 (3.4) 0.1 (3.4) 0.1 (1.5) 0.1 (1.6) 

Note: for the relative RMS error between true responses and responses obtained using the final parameter 
estimates, the values in parentheses are those corresponding to the 5% relative RMS measurement noise 
level. 

Time histories of response quantities different from those considered in Table 7.3 

(e.g., section and fiber responses along the height of the column) were also analyzed. All 

the results obtained are similar and consistent with those presented in this chapter. 
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7.6.4. Steel building frame (SAC-LA-3) 

A 3-story steel moment resisting frame (MRF) structure studied under the SAC 

venture, known as the SAC-LA-3 story building (FEMA-355C 2000), is selected as 

second application example. The building is designed according to the UBC 1994 code. 

The exterior North-South frame is selected for this study (Figure 7.9a), since it has been 

extensively studied previously (e.g., Gupta and Krawinkler 2000). The modeled 2D 

frame has 3 stories and 3 bays, with a story height of 3.96 m and a bay width of 9.14 m. 

Exterior and interior columns are made of A572 steel with W14 257 and W14 311 

cross-sections, respectively. Second, third, and roof level beams are made of A36 steel 

with W33 118, W30 116, and W24 68 cross-sections, respectively. 

 

Figure 7.9: SAC-LA-3 steel building frame: (a) overall geometry, (b) rigid end zones, (c) 
cross-section fiber discretization. 

 The beam-to-column joints are assumed to be fully restrained, and rigid end zones 

are modeled at the ends of beams and columns (Figure 7.9b). In contrast to the bridge 

column example, beams and columns are modeled using FB beam-column elements; 

therefore, only one element is used to model each beam and column. Numerical 

integration over the length of the elements is performed by using Gauss-Lobatto 
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quadrature with 6 and 7 IPs for columns and beams, respectively. Column webs are 

discretized into 6 fibers along their length and one fiber across their width, while a single 

fiber is used to represent each flange of the cross-section (Figure 7.9c). The webs of the 

second, third, and roof level beams are discretized into 16, 14, and 11 fibers along their 

length, respectively, and one fiber across their width. A single fiber is used to represent 

each flange of the cross-section (Figure 7.9c). A linear elastic section shear force-

deformation model is aggregated with the inelastic coupled flexure-axial behavior at the 

section level and along the element. The flexure-axial behavior is uncoupled from the 

shear behavior at the section level. The uniaxial G-M-P material model with primary 

parameters 
 
 

, , , 200 GPa,345 MPa,0.08, 20

200 GPa, 250 MPa,0.05,18, , ,

Tcol col col col T
0 y 0true

TTbeam beam beam beam
0 y 0

E b R  

 E b R

             
        

θ



 is 

used to model the axial behavior of the fibers of the beam and column cross-sections and 

to simulate the true dynamic response of the frame structure to seismic base excitation. 

The nodal masses and distributed gravity loads on the beams are obtained from the design 

dead and live loads as reported in FEMA-355C and are shown in Figure 7.9a. The 

sources of energy dissipation beyond hysteretic energy dissipated through material 

inelastic action are modeled using mass and tangent stiffness-proportional Rayleigh 

damping assuming a critical damping ratio of 2% for the first two initial natural periods 

(after application of the gravity loads), T1 = 1.06 sec and T2 = 0.35 sec. These two initial 

natural periods coincide with the first two elastic natural periods of the building since all 

the steel fibers remain elastic after application of the gravity loads. 
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In the material parameter identification process, the UKF algorithm requires 17 

SPs ( )2 8 1= × +   and it is assumed that only one horizontal acceleration response is 

measured at each level (at the left column). The initial estimates of the material 

parameters to be identified are taken as 140% of their true values, 0
ˆ 1.4 true=θ θ , and the 

initial covariance matrix 0P̂θθ  is assumed diagonal with terms computed assuming a 

coefficient of variation of the initial parameter estimates (with 0θ̂  as initial mean) of 15% 

for col
0E  and beam

0E , and 25% for , , , ,col beam col col beam
y y 0b R bσ σ , and beam

0R . As in the first 

application example, two cases are considered for the measurement noise, namely noise-

free and 5% RMS NSR. It is assumed that the process noise kr  and measurement noise 

kv  are zero-mean Gaussian white noise processes with time-invariant diagonal 

covariance matrices Q  and R , respectively. A coefficient of variation of 41 10−×  is 

assumed for the initial estimates of the material parameters ( 0θ ) to construct the process 

noise covariance matrix Q  for both measurement noise levels (0 and 5% RMS NSR). A 

standard deviation (or RMS) of the measurement noise kv  of 21 10−×  and 27 10−×  of the 

RMS of the corresponding simulated measurements (horizontal acceleration at the 2nd, 

3rd, and roof levels) is assumed in the measurement noise covariance matrix R  for the 

measurement noise levels 0 and 5% RMS NSR, respectively. 

 For all nine seismic inputs and the two measurement noise levels, Table 7.4 

reports the final estimated values of the eight G-M-P primary material constitutive model 

parameters for the beam and column elements. The material stiffness parameters col
0E  
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and beam
0E  are accurately estimated for all the seismic inputs. For EQ1 to EQ3 (PDR ≥ 

1.94%), the remaining six material parameters are accurately estimated with relative 

errors lower than 6%. Since the design satisfies the weak beam-strong column 

requirement of the UBC 1994 code, the nonlinear response is more pronounced in the 

beams than in the columns. Therefore, all the material parameters associated with the 

beams are successfully identified for EQ1 to EQ5, while all the material parameters of 

the columns are successfully identified for EQ1 to EQ3 (three most intense seismic inputs 

considered). For EQ4 to EQ6 (0.91% ≤ PDR ≤ 1.33%), only some of the column material 

parameters are successfully identified (in addition to col
0E , col

yσ  and col
0R  are properly 

identified for EQ5 and for EQ4 with noise-free measurements). For EQ6, the beam 

material parameters ,beam beam
0 yE σ  and beam

0R  are properly identified, while beamb  is not 

accurately estimated because of the limited excursions of the response into the nonlinear 

range. For EQ7 and EQ8 (PDR = 0.44% and 0.59%, respectively), the extent of material 

nonlinearity in the response of the beams is limited, but still beam
yσ  is well identified for 

EQ8 (at both measurement noise levels) and for EQ7 (only for the noise free 

measurement case), and beam
0R  is well identified for EQ8 only for the noise-free 

measurement case. For EQ7 and EQ8, the columns respond quasi linearly with therefore 

only col
0E  is well identified. For EQ9 (PDR = 0.13%), the response of all beam and 

column members of the frame remain linear elastic and therefore the strength and post-

yield related beam and column material parameters cannot be identified. 
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Table 7.4: Final estimates of the G-M-P material constitutive model parameters for the 
SAC-LA-3 frame. 

El. Parameter 
Noise 
level 
(%) 

 Estimation results 

EQ1 EQ2 EQ3 EQ4 EQ5 EQ6 EQ7 EQ8 EQ9 

 true
0 0E E  

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

C
ol

um
ns

 

5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

true
y yσ σ  

0 1.00 1.00 1.00 1.00 0.99 1.40 1.40 1.40 1.40 
5 1.00 1.00 0.99 1.40 1.00 1.40 1.40 1.40 1.40 

trueb b  
0 0.98 1.01 1.00 1.38 1.20 1.40 1.40 1.40 1.40 
5 1.00 1.06 1.06 1.40 1.02 1.40 1.40 1.40 1.40 

true
0 0R R  

0 0.98 0.98 1.00 1.03 1.06 1.40 1.40 1.40 1.40 
5 1.01 0.97 1.02 1.40 1.03 1.40 1.40 1.40 1.40 

B
ea

m
s 

true
0 0E E  

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

true
y yσ σ  

0 1.00 1.00 1.00 1.00 1.00 0.99 1.01 1.00 1.40 
5 1.00 1.01 1.00 1.00 1.00 0.99 1.40 1.03 1.40 

trueb b  
0 0.98 1.01 1.00 0.98 0.96 1.18 1.40 1.35 1.40 
5 0.99 0.97 0.99 0.99 1.00 1.09 1.40 1.40 1.40 

true
0 0R R  

0 0.99 1.00 1.00 1.00 1.00 1.01 1.07 1.00 1.40 
5 1.00 0.99 0.98 1.00 1.00 1.02 1.40 0.91 1.40 

Time histories of the mean ( µ̂ ) and standard deviation (σ̂ ) estimates of the 

material parameters for SAC-LA-3 building frame subjected to EQ1 are shown in Figure 

7.10. The eight parameters are accurately identified and the standard deviation estimates 

of all these parameters decrease asymptotically to zero. The stiffness related parameters 

beam
0E and col

0E  quickly converge to their true values after a few time steps, the strength 

or yield related parameters beam
yσ  and col

yσ  converge to their true values soon after the 

strong motion phase of the earthquake begins (at around t = 4 sec, see Figure 7.5) and 

some steel fibers have yielded, and the post-yield related parameters beamb , colb , beam
0R , 

and col
0R  converge to their true values after the strain ductility demand of enough steel 

fibers has increased sufficiently. 
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Figure 7.10: Estimation results for the G-M-P primary material parameters of the beams 
and columns for the SAC-LA-3 building frame subjected to EQ1: (a) mean values, (b) 
standard deviations. 

 Figure 7.11 compares different global and local responses of the frame to EQ1 

(with 5% RMS NSR) obtained using the true material parameter values ( trueθ ), the initial 

a) 

b) 
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parameter estimates ( 0θ̂ ), and the final identified parameter estimates ( Nθ̂ ). The 

following frame response quantities are plotted in Figure 7.11: the absolute horizontal 

acceleration response history at the roof level ( roofA ), the base shear (V ) versus roof drift 

ratio ( ∆ ), the moment ( 1 1M − ) versus curvature ( 1 1−κ ) hysteretic response at the base of 

the left column (section 1-1 in Figure 7.9a), the moment ( 2 2M − ) versus curvature ( 2 2−κ ) 

hysteretic response at the left section of the 2nd level beam (section 2-2 in Figure 7.9a), 

the stress ( 3 3−σ ) versus strain ( 3 3−ε ) hysteretic response at one of the extreme fibers at 

the base of the central-left column (section 3-3 in Figure 7.9a), and the stress ( 4 4−σ ) 

versus strain ( 4 4−ε ) hysteretic response at one of the extreme fibers at the left section of 

the roof beam (section 4-4 in Figure 7.9a). All the responses computed using the final 

estimates of the material parameters are in excellent agreement with the simulated true 

responses and the successful updating of the nonlinear FE model is evident by comparing 

the responses obtained using the initial and final material parameter estimates with the 

corresponding true response. 
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Figure 7.11: Comparison of true and estimated responses of the SAC-LA-3 building 
frame subjected to EQ1 with 5% RMS NSR. (a) absolute horizontal acceleration at the 
roof, (b) base shear versus roof drift ratio, (c) moment versus curvature at the base of left 
column section (section 1-1 in Figure 7.9a), (d) moment versus curvature at the left 
section of the 2nd level beam (section 2-2 in Figure 7.9a), (e) stress versus strain in 
extreme fiber at the base of the left-central column (section 3-3 in Figure 7.9a), (f) stress 
versus strain in extreme fiber at the left section of the roof beam (section 4-4 in Figure 
7.9a). 

 The same global and local responses but for EQ6 (with 5% RMS NSR) are 

compared in Figure 7.12. In this case, both local responses associated with the columns (

1 1 1 1 vs. M − −κ  and 3 3 3 3 vs. − −σ ε ) remain linear elastic, while the sections ( 2 2 2 2 vs. M − −κ ) 

and fibers ( 4 4 4 4 vs. − −σ ε ) of the beams experience nonlinear behavior. Consequently, the 

strength and post-yield related material parameters associated with the columns (

, ,col col col
y 0b Rσ ) cannot be identified for this seismic input motion (see Table 7.4).  The 

match between the simulated true responses and the corresponding responses of the FE 
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model updated using the final estimates of the material parameters is very good, for both 

global and local response quantities. 

 
Figure 7.12: Comparison of true and estimated responses of the SAC-LA-3 building 
frame subjected to EQ6 with 5% RMS NSR. (a) absolute horizontal acceleration at the 
roof, (b) base shear versus roof drift ratio, (c) moment versus curvature at the base of the 
left column (section 1-1 in Figure 7.9a), (d) moment versus curvature at the left section of 
the 2nd level beam (section 2-2 in Figure 7.9a), (e) stress versus strain in a extreme fiber 
at the base of the left-central column (section 3-3 in Figure 7.9a), (f) stress versus strain 
in extreme fiber at the left section of the roof beam (section 4-4 in Figure 7.9a). 

 Table 7.5 reports the relative RMS errors of the time histories of eleven different 

response quantities simulated based on 0θ̂  and Nθ̂ . The response quantities consist of the 

absolute horizontal acceleration and relative horizontal displacement responses at the roof 

level ( roofA  and roofD , respectively), base shear (V ), moment and curvature at sections 1-

1 and 2-2 (see Figure 7.9a), and stress and strain in an extreme fiber of sections 1-1 and 

2-2. The relative RMS errors between the simulated true responses and responses 

obtained using the initial values of the material parameters vary in the range [66.94 − 
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213.76]%, indicating that the response of the initial FE model (with 0
ˆ=θ θ ) differs 

significantly from the corresponding true response for all the global and local response 

quantities considered. When the final estimates of the material parameters are used to 

compute the responses, the relative RMS errors vary in the range [0.14 − 10.98]% for the 

case of 5% RMS NSR. 

Table 7.5: Relative RMS error of the responses of the SAC-LA-3 frame between the 
simulated true responses (true), responses obtained using the initial parameter estimates 
(initial), and responses obtained using the final parameter estimates (final). Noise level 
5% RMS NSR. 

Motion Pair roofA  roofD  V  1-1M  1-1κ  2-2M  2-2κ  1-1σ  1-1ε  2-2σ  2-2ε  

EQ1 
true/initial 75.82 82.61 132.37 124.38 90.67 131.49 76 123.85 85.06 123.86 75.7 
true/final 0.14 0.4 0.17 0.36 0.87 0.16 0.55 0.44 0.56 0.15 0.56 

EQ2 
true/initial 101.92 94.77 149.28 142.94 74.59 147.1 66.94 141.86 95.67 144.1 67.58 
true/final 0.3 1.13 0.37 0.43 4.58 0.46 0.97 0.49 4.52 0.68 0.98 

EQ3 
true/initial 96.95 100.28 142.68 140.8 131.23 142.17 74.3 141.67 179.44 130.84 77.86 
true/final 0.47 0.99 0.58 0.62 4.81 0.8 0.77 0.65 4.66 0.77 0.81 

EQ4 
true/initial 101.16 107.42 148.24 145.31 147.5 145.05 88.61 146.34 147.75 140.62 91.49 
true/final 0.19 1.32 0.23 1.06 10.98 0.74 1.89 2.57 3.38 0.8 2.48 

EQ5 
true/initial 111.94 151.72 197.2 203.16 116.87 213.76 126 200.85 105.44 210.87 126.91 
true/final 0.26 0.59 0.45 0.55 2.04 0.54 0.74 0.55 1.18 0.67 0.86 

EQ6 
true/initial 105.65 106.25 127.93 127.42 109.28 126.22 91.64 127.63 109.56 127.24 92.36 
true/final 0.32 0.39 0.38 0.39 0.5 0.44 0.78 0.39 0.39 0.57 0.88 

EQ7 
true/initial 121.33 126.69 164.33 164.72 129.37 154.46 125.44 164.32 129.4 167.3 127.65 
true/final 0.3 0.39 0.26 0.25 0.26 0.31 1.05 0.26 0.27 1.35 1.34 

EQ8 
true/initial 112.61 111.14 120.53 119.74 111.96 115.81 106.18 120 112.1 113.29 107.1 
true/final 0.37 0.39 0.39 0.39 0.39 0.42 0.92 0.39 0.39 1.1 1.11 

EQ9 
true/initial 142.03 136.99 159.22 154.34 129.32 102.64 88.15 153.72 129.04 109.12 93.19 
true/final 0.76 0.77 0.8 0.75 0.78 0.51 0.58 0.76 0.79 0.54 0.6 

When the responses are computed using the material parameters identified at each 

time step (pseudo-online), a good agreement between estimated and true responses is also 

obtained, with relative RMS errors lower than 12%. Over 40 response quantities, global 

and local, associated to different beam and column elements, cross-sections, and fibers 
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were investigated (but not presented herein due to space limitation) with results similar to 

and consistent with those presented above. 

7.7. Conclusions 

This chapter proposes and investigates the performance of a novel framework that 

combines state-of-the-art advanced nonlinear finite element (FE) models and the 

unscented Kalman filter, to estimate unknown time-invariant parameters of nonlinear 

inelastic material models in frame-type structures under earthquake ground excitation. 

The proposed framework formulates the state-space model by including the time-

invariant material parameters in the state transition equation and the responses (outputs) 

of the nonlinear FE model corresponding to the measured response quantities are used to 

define the measurement equation. In other words, the equation of motion of the nonlinear 

FE model is inserted in the measurement equation. It is noteworthy that the proposed 

framework is not limited to certain types of FE models, loading conditions, or FE model 

parameterization. Different types of finite element analysis (e.g., quasi-static, dynamic), 

various finite elements (e.g., beam-column, plate, shell, solid elements), and different 

types of material constitutive models (e.g., pseudo-elasticity, plasticity, damage-

plasticity, smeared-crack) can be used with the proposed framework. In addition, other 

time-invariant FE model parameters such as those characterizing the inertia, damping, 

geometric, and constraint properties of the structure can also be incorporated in the 

estimation procedure. 

 Two numerical examples, a cantilever steel column representing a bridge pier and 

a two-dimensional 3-story, 3-bay steel frame, are presented to demonstrate the proposed 
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approach for material parameter identification in nonlinear FE models. Nine actual 

earthquake ground motions are used as known seismic input to compute (simulate) the 

responses of the test structures, which are then contaminated by numerical white noise to 

study the robustness of the identification scheme to measurement noise. Because of the 

varying intensity of the selected seismic input motions, the response of each test structure 

ranges from quasi-linear to highly nonlinear. Using the simulated response data, noise-

free and noisy, and the corresponding  seismic input motion (noiseless), the proposed 

framework accurately estimates the unknown time-invariant material parameters of the 

nonlinear FE model, provided that: (i) the loading intensity is sufficient to exercise the 

parts (branches) of the nonlinear material models which are governed by the material 

parameters to be identified, and (ii) the measured dynamic response quantities are 

sufficiently sensitive to the material parameters to be identified. The relative root-mean-

square error measure is used to compare true and estimated time histories of various 

global and local response quantities and to confirm the effectiveness of the proposed 

nonlinear FE model updating approach. The proposed framework provides a powerful 

tool for model updating of advanced mechanics-based nonlinear FE models, even when a 

limited number of measurement data are available. 

 Additional research is needed to analyze and further validate the proposed 

methodology for nonlinear FE model updating, especially when applied to large-scale 

real-world structures subjected to real earthquake excitations. In the latter case, it is 

expected that modeling uncertainty, unmeasured excitations, and unknown measurement 

noise level will significantly affect the estimation results, and will therefore require an 

extension of the framework presented here. Finally, it is important to mention that this 
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approach can be used directly, through the updated nonlinear FE model, for the purpose 

of damage identification (structural health monitoring) and damage prognosis. 
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CHAPTER 8 

NONLINEAR SYSTEM IDENTIFICATION FOR HEALTH 

MONITORING OF CIVIL STRUCTURES 

8.1. Introduction 

Information obtained from adequate damage identification (DID) methods can be 

used to support decision-making related to emergency response, post-disaster 

rehabilitation, maintenance, and inspection of civil structures. In this regard, 

implementation of accurate and robust DID strategies for civil structures using recorded 

vibration data plays an important role in two of the recently introduced Grand Challenges 

in Civil Engineering, namely poor infrastructure resilience to disasters and poor and 

degrading infrastructures (Becerik-Gerber et al. 2014). 

Five hierarchical levels have been adopted by the structural health monitoring 

(SHM) community to define the DID problem and to classify the proposed methods 

(Rytter 1993 and Worden and Dulieu-Barton 2004). These levels are: Level 1 − 

Detection, Level 2 − Localization, Level 3 − Classification, Level 4 − Assessment, and 

Level 5 – Prediction/Prognosis. Methods based on linear system identification (SID), 
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modal parameter identification being the most popular in this group, and nonlinear SID 

have been proposed for DID purposes. DID based on changes in the modal properties of 

an equivalent linear-elastic viscously damped model of the structure has been 

undoubtedly one of the most popular approaches. This approach requires low-amplitude 

input-output or output-only vibration data recorded before (reference) and after the 

structure has suffered damage. Damage is then identified based on the changes in the 

estimated modal properties, quantities derived thereof (e.g., curvature mode shapes), or 

based on linear FE models calibrated using the vibration data measured in the structure 

before and after the damage-inducing event. Because these methods assume a linear-

elastic response of the structure, damage is identified as a loss of effective stiffness (e.g., 

Teughels and De Roeck 2004, Moaveni et al. 2010, Simoen et al. 2013), and therefore 

they are unable to reveal information about loss of strength, history of response 

nonlinearities, and related damage in the structure. As a result, Levels 3 and 4 of DID are 

difficult to attain using methods based on linear models. In addition, the use of linear 

models disallows Level 5 of DID. 

Methods of DID based on nonlinear SID have mostly been applied to numerically 

simulated response data from highly idealized models of nonlinear civil structures (e.g., 

shear building model, single degree-of-freedom, and chain-like multi degree-of-freedom 

systems) –topic initiated by the pioneering work of Distefano and coworkers 

(1975a,b;1976)–, which are not suitable for nonlinear response prediction of civil 

structures with real-world complexities. In recent years, nonlinear FE model updating of 

civil structures subjected to static and dynamic loadings has attracted significant attention 

(e.g., Ching  et al. 2006, Nasrellah and Manohar 2011, Liu and Au 2013, Song and Dyke 
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2013, Omrani et al. 2013, Yang et al. 2014). However, in the case of nonlinear hysteretic 

FE model updating of structures subjected to dynamic excitation, previous studies have 

used simplified structural models with lumped nonlinearities (e.g., plastic hinges) 

described using empirically-derived nonlinear models, such as the Bouc-Wen model 

(Ismail et al. 2009). These simplified and empirical models are not capable to properly 

represent the actual nonlinear behavior of structures and, consequently, are not typically 

used in state-of-the-art mechanics-based structural FE models that are being increasingly 

employed for modeling and simulation of nonlinear civil structures (Filippou and Fenves 

2004). Incorporating the use of high-fidelity mechanics-based nonlinear FE models in 

advanced SHM techniques will help to make progress towards wide application of state-

of-the-art SHM methods on large and complex civil structures. Nonlinear FE models able 

to capture the damage mechanism to be identified enables reconstruction of the nonlinear 

response process experienced by the structure during the damage-inducing loading, 

which in turn provides invaluable information about the location, type, and extent of 

damage in the structure. 

Recently, methodologies for model updating of state-of-the-art nonlinear FE 

models using input/output data recorded during damage-inducing events, i.e., loading 

events strong enough to force the structure into its nonlinear range of behavior, have been 

proposed in the literature. This approach represents an important progress in the field of 

SHM of civil structures, because it will potentially provide a rapid post-earthquake 

performance assessment of structural safety from the updated nonlinear mechanics-based 

FE model. In addition, damage prognosis can be also conducted using the updated FE 

model and possible future loading scenarios. Using numerically simulated response data 
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from a 2D 1-story 1-bay steel frame with distributed-plasticity subjected to an harmonic 

lateral force excitation, Shahidi and Pakzad (2014) used the response surface method to 

update two parameters of a bilinear material constitutive law (modulus of elasticity and 

post yielding stiffness ratio), which was utilized to model the fibers of the members of the 

frame. Astroza et al. (2015) and Ebrahimian et al. (2015) used the unscented Kalman 

filter (UKF) and the extended Kalman filter (EKF), respectively, to estimate time-

invariant parameters describing the nonlinear material constitutive models of simple but 

realistic steel structures. Their application examples used numerically simulated response 

data of a cantilever steel pier and a 2D 3-story 3-bay steel frame and involved the 

estimation of three to eight parameters. 

This chapter aims to extend the formulation proposed by Astroza et al. (2015). 

The performance and robustness of the proposed framework are analyzed when limited 

response data are available and, in addition to parameters characterizing the nonlinear 

material constitutive laws, damping parameters (which are known to have a key influence 

on nonlinear response of structures) of the FE model are considered in the estimation 

process. To alleviate the computational burden of the methodology proposed by the 

authors, in this chapter three non-sequential updating approaches are presented and 

analyzed. The effects of using heterogeneous sensor arrays on the identifiability of the 

modeling parameters and updating of the nonlinear FE model are also investigated. In 

addition, an adaptive filtering approach is proposed to estimate the measurement noise 

covariance in addition to the time-invariant modeling parameters. Finally, effects of input 

noise in the estimation results are studied. Although the proposed framework is general in 

principle, the verification example presented in this chapter considers the problem of 



www.manaraa.com

294 
 

updating a mechanics-based nonlinear FE model of a three-dimensional (3D) 5-story 2-

by-1 bay reinforced concrete (RC) frame building subjected to bi-directional earthquake 

excitation.  

8.2. Problem statement 

The discrete-time equation of motion of a nonlinear FE model of a structure can 

be formulated as 

 ( ) ( ) ( ) ( ) ( )( )1 1 1 1 1,k k k k k+ + + + ++ + =M θ q θ C θ q θ r q θ θ f   (8.1) 

where nθ∈ =θ   vector of unknown time-invariant modeling parameters, 

, , n∈ =q q q  
nodal displacement, velocity, and acceleration vectors, respectively, 

n n×∈ =M  mass matrix, n n×∈ =C  damping matrix, ( )( ), n∈ =r q θ θ 

history-

dependent internal resisting force vector, n∈ =f  dynamic load vector, and the subscript 

indicates the time step. For the case of rigid base earthquake excitation, the dynamic load 

vector takes the form 1 1
g

k k+ += −f M uL ,  where n r×∈ =L  influence matrix and 

1g r×∈ =u   input ground acceleration vector with r = number of base excitation 

components (in the general case of rigid base excitation r =  6, i.e., 3 rotations and 3 

translations base excitation components). 

The response of the structure can be recorded using a heterogeneous sensor array 

(e.g., accelerometers, GPS, long-gauge fiber optic sensors, strain gauges) and at time 

( )1 1kt k t+ = + ∆ , in which 0,1,...k =  and t∆ = time step, can be expressed as 

 ( )1 1 1 1 1 1 1 1ˆ, , ,
TTT T T g

k y k k k k k k k+ + + + + + + +
 = + = +  

y L q q q u v y v  
 (8.2) 
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where ny∈ =y 
vector of recorded structural response quantities, ˆ ny∈ =y 

 vector of 

predicted structural response quantities from the FE model, 
3n n ry

y
× +∈ =L  output matrix 

(known), and ny∈ =v   output measurement noise vector assumed to be additive white 

Gaussian noise (AWGN) with zero-mean and covariance matrix 1k+R , i.e., 

( )1 1,k k+ +v 0 R N . Equation (8.2) assumes that the nonlinear FE model can predict with 

reasonable accuracy the actual response of the structure of interest. Research conducted 

in the field of nonlinear modeling and response simulation of civil structures has shown 

that this goal can be achieved using mechanics-based nonlinear FE models with well 

calibrated material constitutive models (e.g., Uriz et al. 2008, Martinelli and Filippou 

2009, Ebrahimian et al. 2014). 

From Equations (8.1) and (8.2), the vector of recorded response quantities at time 

1kt + ,  1k+y , can be expressed as a nonlinear function of the modeling parameters (θ ), 

input ground acceleration time histories ( 1
g
k+U ), and initial conditions ( 0 0,q q ) of the FE 

model, i.e., 

 ( )1 1 1 0 0 1, , ,g
k k k k+ + + += +y h θ U q q v

  (8.3) 

where ( )1k+ ⋅h  is a nonlinear response function of the nonlinear FE model at time 1kt +  

and ( ) ( ) ( )1 1 2 1, ,...,
TT T Tg g g g

k k+ +
 =   

U u u u

  
 is the input ground acceleration time history 

from time 1t  to 1kt + . Without loss of generality, it is assumes that the initial nodal 

displacement and velocity vectors, 0q  and 0q , are equal to zero henceforth. 
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If the unknown time-invariant modeling parameter vector, θ , is modeled as a 

stationary process according to the Bayesian approach, the evolution of which is 

characterized by a random walk process, the nonlinear parameter estimation problem at 

time 1kt +  ( 0,1, , 1k N= −  with N = number of data samples of the input excitation) can 

be formulated as 

 ( )
1

1 1 1 1 1,
k k k

g
k k k k k

+

+ + + + +

= +
 = +

θ θ γ

y h θ U v

 (8.4) 

where kγ  and kv  are called process noise and measurement noise, respectively, and are 

assumed to be independent AWGN processes with zero mean vectors and diagonal 

covariance matrices kQ  and kR , respectively, i.e., ( )~ ,k kγ 0 QN  and 

( )1 1~ ,k k+ +v 0 RN . Equation (8.4) represent a nonlinear state-space model, which can be 

used to estimate the unknown modeling parameter vector, θ , by using Bayesian filtering 

techniques (Haykin 2001, Simon 2006). In this chapter, the UKF (Julier and Uhlmann 

1997, Wan and van der Merwe 2000) is used as parameter estimation tool. The parameter 

estimation problem for the identification of hysteretic structures formulated in Equation 

(8.4) is convenient and practical, because it requires estimating a low number of 

parameters by taking advantage of the mechanics-based nonlinear FE model. Only one 

set of material parameters needs to be considered in θ  for each material present in the 

structure. The formulation described by Equation (8.4) does not account for unmeasured 

input excitations and model uncertainty. Potential detrimental effects of input 

measurement noise will be studied later in the chapter, whereas study of model 

uncertainty is beyond the scope of this chapter. 
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For frame-type structures, distributed-plasticity FE models (force-based and 

displacement-based nonlinear beam-column FE models) provide a good compromise 

between computational cost, numerical robustness, and accuracy (Taucer et al. 1991). In 

these types of FE models, material nonlinearity can occur at any monitored cross-section 

(integration point or IP) along the element. The element behavior is obtained by 

numerical integration of the section response along the element. Element cross-sections 

are discretized in longitudinal fibers, which permit to simulate the section nonlinear 

response using uniaxial material constitutive laws for the fibers, which are defined by 

time-invariant parameters. Figure 8.1 shows a schematic representation of the 

hierarchical discretization levels in distributed plasticity FE models of RC frame-type 

structures. 

 
Figure 8.1: Hierarchical discretization levels in distributed plasticity FE models of 
frame-type RC structures. 

8.3. Unscented Kalman filter for nonlinear FE model updating 

The UKF is proposed to solve the parameter estimation problem defined by the 

nonlinear state-space model in Equation (8.4). The goal is to estimate the probability 

density function (pdf) of the modeling parameters at time 1kt +  given the known noisy 
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input and output measurement data until time 1kt + , i.e., ( )1 1 1,g
k k kp + + +θ U Y  where 

1 1 2 1, , ,
TT T T

k k+ + =  Y y y y

. To this end, a recursive prediction-correction process is 

employed. In the prediction step the a priori pdf at time 1kt +  is computed as 

 ( ) ( ) ( ) ( )1 11 , , ,
n

g g g
k k k k k k k k k kk kp p p p d

θ

+ ++ = = ∫θ θ U Y θ U Y θ θ U θ


    (8.5) 

where ( ),g
k k kp θ U Y  is the a posteriori pdf at time kt  and ( )1 , g

k k kp +θ θ U  is obtained 

from the first expression in Equation (8.4). In the correction step, the a posteriori pdf at 

time 1kt +  is computed as 

 ( ) ( ) ( ) ( )
( ) ( )1

1 1 1 1
1 11 1

1 1 1 1 1

, ,
,

, ,
k

n

g g
k k k k k kg

k kk k g g
k k k k k k k

p p
p p

p p d
+

θ

+ + + +
+ ++ +

+ + + + +

= =
∫

θ U Y y θ U
θ θ U Y

θ U Y y θ U θ


 



 

 (8.6) 

Multi-dimensional integrals involved in Equations (8.5) and (8.6) are usually 

intractable and consequently approximate solutions to find ( )1 1k kp + +θ  need to be 

adopted. Local and global approaches (Arasaratnam and Haykin 2009) are proposed in 

the literature to find approximate solutions. Methods in the local approach assume a 

given distribution for the posterior pdf, ( )1 1k kp + +θ , being Gaussian the most popular 

choice. The EKF and UKF are in this category. Methods in the global approach do not 

make any assumption about the posterior pdf, but they are computationally very 

demanding. Particle filters fall in this group. 

The UKF assumes that the posterior pdf is Gaussian, consequently it is completely 

determined by its mean vector and covariance matrix, i.e., 

( ) ( )11 1 1 1 1 1; ,kk k k k k kp ++ + + + + += θθθ θ θ PN , where ( )1 1 1 1 1; ,k k k k k+ + + + +
θθθ θ PN  represents a 
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multivariate Gaussian distribution with the components of 1k+θ  as random variables and 

1 1k k+ +θ  and 1 1k k+ +
θθP  denote the posterior mean and posterior covariance matrix of 1k+θ  

given 1k+Y  and 1
g
k+U . 

The UKF uses the unscented transform (UT) to obtain estimates of the mean 

vector and covariance matrix of the modeling parameter vector (θ ), denoted by θ̂  and 

ˆ θθP , respectively, by defining a set of deterministically chosen sample points (referred to 

as sigma points or SPs) denoted as ϑ . When the SPs are propagated through a nonlinear 

vector function, they capture the true mean and covariance matrix up to the second order 

of the Taylor series expansion of the nonlinear function (third order of the Taylor series 

expansion for a Gaussian random vector) (Wan and van der Merwe 2000). The UKF 

avoids linearization of the nonlinear response function of the nonlinear FE model and 

consequently does not require computation of the Jacobian matrix of ( )1k+ ⋅h  with 

respect to the modeling parameters (θ ). However, at every time step that the FE model 

needs to be updated, ( )2 1nθ +  FE models need to be run , which corresponds to the 

number of SPs for the case of the scaled UT. Figure 8.2 summarizes the UKF algorithm 

for the parameter estimation problem of the nonlinear FE model. ( )
1

i
k+Y  is the output 

vector at time 1kt + corresponding to the SP ( )
1

i
k+ϑ , and mW  and cW  are the weight 

coefficients of the SPs to estimate the mean vector and covariance matrix, respectively. 

1 1
ˆ

k k+ +θ  and 1 1
ˆ

k k+ +
θθP  denote, respectively, the estimates of the mean vector and 

covariance matrix of the modeling parameter vector at time 1kt +  given 1k+Y  and 1
g
k+U . 0θ̂  
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and 0
ˆ θθP  are the initial estimates of the mean vector and covariance matrix of the 

modeling parameters. In this chapter the scaled UT with parameters 0.01=α , 0=κ , and 

2=β  is used. More details about the formulation of the parameter estimation problem 

for frame-type distributed-plasticity FE models using the UKF and the UT is discussed 

elsewhere (Astroza et al. 2015). 

 
Figure 8.2: Framework for nonlinear FE model updating using the UKF. 
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Nonlinear response of a mechanics-based nonlinear 3D 5-story 2-by-1 bay RC 

frame building subjected to bidirectional seismic excitation is simulated using the open-

source object-oriented software framework OpenSees (2014). Translation components of 

ground acceleration recorded at the Sylmar County Hospital (EQ1) during the 1994 

Northridge earthquake and at Los Gatos station (EQ2) during the 1989 Loma Prieta 
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earthquake are independently considered as input base excitations. Components 360° and 

90° of EQ1 and EW and NS of EQ2 are applied in the longitudinal and transverse 

direction of the building, respectively (Figure 8.3). The acceleration ground motions were 

recorded at a sampling rate of 50 Hz, filtered with a band-pass filter with cutoff 

frequencies of 0.1 and 23.0 Hz, and have 750N =  and 600N =  data samples for EQ1 

and EQ2, respectively. The peak ground acceleration (PGA) of components 360° and 90° 

of EQ1 were 0.84g and 0.60g , respectively, while PGA of components EW and NS of 

EQ2 were 0.33g and 0.45g, respectively. 

 
Figure 8.3: Acceleration time history of the input seismic motion. 

The building is designed as an intermediate moment-resisting frame according to 

the 2006 International Building Code (ICC 2006) for a location in downtown Seattle, 

WA, with Site Class D soil conditions and a short-period spectral acceleration 
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1.37MSS g=  and a one-second spectral acceleration 1 0.53MS g= . The frame has a story 

height of 4.0 m and bay width of 5.0 m and 6.0 m in the longitudinal (X) and transverse 

(Z) directions, respectively (Figure 8.4a). The frame has six identical 0.45 0.45× m RC 

columns reinforced with 8 #8 longitudinal reinforcement bars and #3 @ 150 mm 

transverse reinforcement. RC beams in longitudinal direction are 0.40 0.40× m and are 

reinforced with 6 #8 longitudinal reinforcement bars and #3 @ 100 mm transverse 

reinforcement. RC beams in transverse direction are 0.40 0.45× m and are reinforced with 

8 #8 longitudinal reinforcement bars and #3 @ 100 mm transverse reinforcement. All 

reinforcements in beams and columns are of Grade 60 steel. 

 
Figure 8.4: 3D RC frame building structure: (a) Isometric view, (b) Cross-section of 
columns and beams elements. 

The Popovics concrete constitutive law (Popovics 1973), Concrete04 in 

OpenSees, without tension is used to model the concrete fibers. Four material parameters 
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parameters are the modulus of elasticity ( cE ), peak compressive strength ( ccf  ), strain at 

peak compressive strength ( cc ), and strain at crushing strength ( cu ). The values of ccf  , 

cc , and cu  correspond to the confined state of concrete and are computed based on the 

undamaged properties of the concrete material. ccf   and cc  account for confinement 

effects of the transverse reinforcement according to Mander et al. 1988, whereas cu  is 

computed as suggested by Scott et al. (1982). The modified Giuffré-Menegotto-Pinto 

model (Filippou et al. 1983), Steel02 in OpenSees, is used to model the nonlinear uniaxial 

stress-strain behavior of the reinforcing steel fibers. Four primary parameters of this 

constitutive model consists of modulus of elasticity ( sE ), yield strength ( yf ), strain-

hardening ratio (b ), and a parameter describing the curvature of the transition curve 

between the asymptotes of the elastic and plastic branches during the first loading ( 0R ). 

Figure 8.5 shows the uniaxial material constitutive laws used to model concrete and 

reinforcing steel fibers and the parameters describing them. 

 
Figure 8.5: Uniaxial material constitutive laws used in the FE model: (a) Concrete, (b) 
Reinforcing steel. 
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Each beam and column member is modeled using one force-based (FB) beam-

column element. Numerical integration along the length of the elements is performed 

using Gauss-Lobatto quadrature with five IPs for columns, five IPs for longitudinal 

beams, and six IPs for transverse beams. In force-based beam-column elements 

deformations localize at a single IP, therefore the number of IPs on each member is 

selected such that the weight of the IP associated with the section accumulating the 

deformation approximately equals the expected physical length where deformation 

concentrates (plastic hinge). In this chapter, the plastic hinge length is taken equal to one 

half of the cross-section height for beams and equal to the cross-section height for 

columns. Column and beams cross-sections are discretized into longitudinal fibers as 

shown in Figure 8.6b. Linear section shear and torsion force-deformation models are 

aggregated, uncoupled with the inelastic coupled flexural-axial behavior, at the section 

level and along the element. Nodal masses and distributed gravity loads acting on 

longitudinal and transverse beams considered in the FE model are computed from the 

design dead and live loads (ICC 2006) and are shown in Figure 8.6a. 

A set of modeling parameter values, referred to as true values, are assumed for 

concrete and reinforcing steel materials. These values of the material parameters are: 

200true
sE GPa , 414true

yf MPa , 0 18trueR  , 0.05trueb = , 27600true
cE MPa , 

40 true
ccf MPa  , and 0 0035true

cc .  . It is noteworthy that cu  is not considered as a 

parameter to be estimated because its effect on the response of the structure is negligible. 

In addition to the parameters characterizing the nonlinear material constitutive laws, 

damping parameters will also be considered later in the estimation phase. The sources of 
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energy dissipation beyond energy dissipated through hysteretic material behavior are 

modeled using mass and tangent stiffness-proportional Rayleigh damping (based on the 

tangent stiffness matrix at the last converged step of analysis). A critical damping ratio of 

2% for the first and second natural periods (after application of the gravity loads) in the 

longitudinal direction of the building, T1 = 1.67 sec and T2 = 0.54 sec, is considered. 

Therefore, the mass and stiffness proportional parameters used to describe the Rayleigh 

damping are 0 1137true
M .   and 0 0026true

K .  , respectively. The FE model described 

above and the true values of the parameters are used to simulate the response of the 

structure, which is referred as true response hereafter. 

 
Figure 8.6: Finite element model: (a) nodal masses and distributed loads on beams, (b) 
cross-section fiber discretization. 
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true responses of the structure are polluted by output measurement noise to define the 

measured output data ( y ), which in conjunction with the translational components of 

input ground acceleration ( gu ) recorded at Sylmar and Los Gatos stations (Figure 8.3) 

are used to estimate the modeling parameter vector and update the nonlinear FE model of 

the 3D RC structure. The output measurement noise is modeled as a zero-mean AWGN 

vector, and it represents all the sources of noise existing when recording data in real 

world, e.g., sensor and data acquisition (DAQ) system noises and ambient vibrations. In 

what follows, the same FE model of the structure as used to obtain the true responses is 

considered for parameter estimation, i.e., it is assumed that there is no modeling 

uncertainty. In addition, no input measurement noise is considered initially. Potential 

detrimental effects of presence of input measurement noise are studied in Section 8.4.5. 

8.4.1. Structural response recorded by a sparse accelerometer array 

To analyze the robustness of the parameter estimation framework for the case of 

limited output measurements, a sparse accelerometer array consisting of two 

accelerometers, one for each translational direction, at 3rd, 5th, and roof floors is 

considered (black arrows in Figure 8.4 indicate the location of accelerometers used to 

measure the relative acceleration responses). A 1.0%g root-mean-square (RMS) zero-

mean white Gaussian output measurement noise is added to each true relative 

acceleration response after completion of the structural response simulation to pollute the 

true responses, i.e., the actual covariance matrix of the output measurement noise is 

( )22 2
60.96 10 m s−× I  where i i i= ×I  identity matrix. Statistically uncorrelated 
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realizations of output measurement noise are considered for different acceleration 

responses. In the estimation, it is assumed that the output measurement noise is a zero-

mean Gaussian process with a covariance matrix ( )22 2
1 60.24 10k m s−
+ = = ×R R I , i.e., a 

standard deviation (or RMS) of 0.5%g RMS is estimated for the output measurement 

noise. A covariance matrix of the output measurement noise different to the true one is 

considered in the estimation, because in practice only an estimate of the actual variances 

of the output measurement noises can be inferred based on the characteristics of the 

sensors and DAQ system, experience, and engineering judgment. Time-invariant second 

order statistics are assumed for the process noise kγ , with zero-mean and covariance 

matrix k =Q Q . The diagonal entries of Q  are assumed equal to 2
0

ˆ( )iq×θ  where 

1, ,9i = 
 and 41 10q −= × , i.e., the process noise covariance matrix is constructed 

assuming a coefficient of variation of 41 10−×  for the initial estimate of the mean of the 

material parameters ( 0θ̂ ). 

Two cases are considered to study the effect of the initial estimate of the mean of 

the modeling parameters ( 0θ̂ ), namely, 0
ˆ 1.4 true=θ θ  and 0

ˆ 2.0 true=θ θ . For all cases the 

initial estimate of the covariance matrix of the modeling parameters, 0P̂θθ , is assumed to 

be diagonal (initial estimates of the modeling parameters are statistically uncorrelated) 

with terms computed assuming a coefficient of variation of 25% of the initial estimate of 

the mean 0θ̂ , i.e., the diagonal entries of 0P̂θθ  are computed as  2
0

ˆ( )ip×θ  where 

1, ,9i = 
 and 0.25p = . 
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The UKF is used to estimate the a posteriori mean vector and covariance matrix 

of the modeling parameters at each time step (see Figure 8.2). Because nine modeling 

parameters need to be estimated, 19 SPs ( )2 9 1= × +  are used. This means that 19 

nonlinear FE models (one for each SP) need to be run from the 1t  to kt , with 1, ,k N= 
 

and 750N =  for EQ1 and 600N =  for EQ2 , when updating the modeling parameters 

at time kt . Table 8.1 reports the final a posteriori mean estimates of the modeling 

parameters (which correspond to stable and converged values) normalized by their 

corresponding true parameter values for both input motions and the two cases of 0θ̂  

considered. For the case 0
ˆ 1.4 true=θ θ  the eight modeling parameters associated to the 

nonlinear constitutive material models are accurately estimated with relative errors less 

than 6%. The stiffness-proportional of Rayleigh damping coefficient ( Kβ ) is also 

accurately estimated, however for the mass-proportional Rayleigh damping coefficient (

Mα ) is estimated with the largest relative error, 8% and 16% for EQ1 and EQ2, 

respectively, among all the modeling parameters considered in the estimation. 

Table 8.1: Final estimates of the mean of the modeling parameters obtained using a 
sparse accelerometer array. 

Case 0θ̂  EQ 
Modeling parameter 

s
true
s

E
E

 y
true
y

f
f  0

0
true
R

R  
true
b

b  c
true
c

E
E

 
 

cc
 true

cc

f
f




 cc
 true
cc




 M
true
M

α
α

 K
true
K

β
β

 

1 
1.4 trueθ  

EQ1 1.00 1.00 1.00 1.00 0.98 0.98 1.03 1.08 0.99 

2 EQ2 1.00 1.00 0.98 1.02 1.01 1.00 1.06 1.16 1.00 

3 
2.0 trueθ  

EQ1 1.00 0.98 1.07 1.09 1.01 1.03 0.99 0.87 1.00 

4 EQ2 1.00 1.01 0.97 1.07 1.02 0.90 1.00 1.35 1.00 
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For the case 0
ˆ 2.0 true=θ θ  consistent results are obtained. Nevertheless, in this 

case the relative errors of some modeling parameters increase. Relative error of Mα  

increases to 13% and 35% for EQ1 and EQ2, respectively. Post-yield parameters 

associated to the modified Giuffre-Menegotto-Pinto constitutive law, 0R  and b , are 

estimated with relative errors of 7% and 9% for EQ1 and 3% and 7% for EQ2, while  
ccf   

is estimated with an error of 10% for EQ2. Convergence to inaccurate values of some of 

the modeling parameters can be due to: (i) inadequate performance of the parameter 

estimation framework, (ii) low sensitivity of the output measurements with respect to 

these parameters (i.e., some parameters might not be identifiable), or (iii) these modeling 

parameters are not activated during the response of the structure. In the latter case, not 

activated modeling parameters do not change their initial values (Astroza et al. 2015, 

Ebrahimian et al. 2015), which is not the case here. To check that the estimation process 

performs correctly given the input and output measurements, the relative RMS error 

(RRMSE) between the true responses and their counterparts obtained using the final 

estimates of the modeling parameters ( ˆ
Nθ ) are computed (Table 8.2). It is noted that the 

RRMS error between two signals 1s  and 2s  is compute as 

[ ] ( ) ( )2 21 2 1
1 1% 1 1 100Ns Ns

k k kk kRRMSE Ns s s Ns s
= =

   = − ×      ∑ ∑ , where Ns  is the total 

number of data samples. In Table 8.2 the output measurement t
ijq  represent the relative 

acceleration time history at story i  in direction j , where L  and T  are longitudinal and 

transverse directions, respectively. The RRMSEs between the true responses and their 
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counterparts obtained using the initial estimate of the modeling parameters ( 0θ̂ ) are also 

included. From the RRMSEs between the true output measurements and their counterparts 

based on the initial and final estimates of the modeling parameters is evident that the FE 

model updating framework (i.e., parameter estimation procedure) works properly and 

therefore the considered output measurement responses are not very sensitive to 

parameters Mα , b , and  
ccf  . It is noteworthy that the noisy measured responses for EQ2 

have a lower signal-to-noise ratio than those for EQ1, because the amplitude of the 

responses are lower for EQ1 and the same noise is considered for both cases. A detailed 

study about identifiability, which investigates if the modeling parameter vector θ  can be 

determined from the measured data and in the general case can be evaluated by 

examining the rank of the Fisher Information matrix of the model, is out of the scope of 

this chapter and is the subject of ongoing research by the authors. 

Table 8.2: Relative RMS errors (in %) of the output measurements. 
 

Case θ̂  EQ 
Output measurement 

 
1 3

t
L=y q  2 3
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T=y q  53

t
L=y q  54

t
T=y q  5 6
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In
iti

al
 e

st
im

at
es

 1 

0
ˆ 1.4 true=θ θ  

EQ1 70.5 79.87 97.71 101.97 89.88 106.68 

2 EQ2 126.02 57.41 78.45 113.52 38.59 62.69 

3 

0
ˆ 2.0 true=θ θ  

EQ1 96.64 118.23 142.97 105.52 104.72 121.27 

4 EQ2 129.78 87.72 96.01 116.82 66.22 76.36 

Fi
na

l e
st

im
at

es
 1 

( )0
ˆ ˆ 1.4N

true=θ θ θ  
EQ1 1.21 1.17 1.32 1.85 1.69 1.75 

2 EQ2 3.67 2.29 1.74 2.35 1.43 1.51 

3 
( )0

ˆ ˆ 2.0N
true=θ θ θ  

EQ1 4.65 2.44 2.49 3.09 2.84 2.49 

4 EQ2 5.96 4.01 3.29 5.30 3.29 3.04 
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Figure 8.7 and Figure 8.8 show the time histories of the a posteriori estimates of 

the mean and coefficient of variation (CV) of the modeling parameters, respectively, for 

EQ1 and the two initial mean estimates ( 0θ̂ ) aforementioned. The mean estimates of all 

the modeling parameters, which are normalized by their corresponding true values, 

converge to stable values soon after the strongest part of the input excitations at around 5 

sec (Figure 8.7). Stiffness-related ( sE  and cE ) and damping-related ( Mα  and Kβ ) 

modeling parameters start to update from the beginning of the excitation, because data 

contained in the measured structural responses (outputs) during low amplitude excitation 

carry information about these parameters. Parameter sE  reaches its converged value at 

around 2 sec, while cE  and Kβ  converge to their stable values at around 4 sec. Later, as 

the amplitude of the excitation increases and the structure experiences nonlinear 

behavior, the measured response data carry information about the parameters associated 

to the nonlinear behavior of concrete and reinforcing steel material models. Parameters 

0, , , ,cc cc yf f R′ε  and b  start to update at around 3.5 sec when some concrete fibers reach 

their maximum strength and some reinforcing steel fibers yield and experience 

excursions into its nonlinear range of behavior. Accurate estimation of parameters related 

to the post-yield behavior of the reinforcing steel material model ( 0R  and b ) require that 

the strain ductility demand of enough steel fibers increase sufficiently. On the other hand, 

at the same time that the measured response data contain enough information about a 

modeling parameter and it starts to update and converge to its true value, the estimate of 

the coefficient of variation of the parameter decrease asymptotically to zero, i.e., the 

uncertainty in the estimation of the parameter decreases towards zero (Figure 8.8). 
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Figure 8.7: Time histories of the estimates of the mean of the modeling parameters for 
EQ1. 

 
Figure 8.8: Time histories of the estimates of the standard deviations of the modeling 
parameters for EQ1. 
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Figure 8.9 compares different global and local structural response quantities of the 

building obtained using the true parameters trueθ  (i.e., true responses), the initial mean 

estimate of the modeling parameters ( 0θ̂ ), and the final mean estimate of the modeling 

parameters ( ˆ
Nθ ) for EQ1 and 0

ˆ 1.4 true=θ θ . Relative acceleration response time histories 

of the roof of the building in its longitudinal ( x
roofa ) and transverse ( z

roofa ) directions are 

compared in Figure 8.9a-b, respectively. Figure 8.9c-d compare the base shear in 

longitudinal and transverse directions ( x
bV  and z

bV , respectively) normalized by the total 

weight of the building (W ), versus the roof drift ratio in the corresponding direction (

xRDR  and zRDR ). Section level responses are compared in Figure 8.9e-h, which show 

the moment-curvature ( M − κ ) responses at the base of a column (section 1-1 in Figure 

8.4a), at the end of a 2nd floor longitudinal beam (section 2-2 in Figure 8.4a), and at the 

end of a 2nd floor transverse beam (section 3-3 in Figure 8.4a). Finally, Figure 8.9i-j 

compare the stress-strain responses of monitored concrete and reinforcing steel fibers at 

the bottom of a column (section 1-1 in Figure 8.4a). Comparison of global and local 

responses indicates that the updated FE model match almost perfectly the true responses. 

These results confirm that the proposed methodology successfully updates the nonlinear 

FE model by properly driving the initial mean estimate of the modeling parameters ( 0θ̂ ) 

to their true values ( trueθ ). 

The results show the capabilities of the proposed methodology for accurate and 

complete DID, including detection, localization, classification, and quantification of 

damage provided that the mechanics-based nonlinear FE structural model is able to 

capture the damage mechanisms to be identified. The udpated nonlinear FE model can be 



www.manaraa.com

314 
 

examined to asses the state of health of the structure after a potential damage-inducing 

event and it provides information about loss of stiffness, strength degradation, and history 

of the response nonlinearities experienced by the structure. 

 
Figure 8.9: Comparison of true global and local responses of the building with their 
initial and final estimated counterparts for EQ1 and 0

ˆ 1.4 true=θ θ : (a) rel. acc. response 
time history of the roof in longitudinal direction; (b) rel. acc. response time history of the 
roof in transverse direction; (c) normalized base shear vs. roof drift ratio in longitudinal 
direction; (d) normalized base shear vs. roof drift ratio in transverse direction; (e-f) 
moment vs. curvature at the base of a column (section 1-1 in Figure 8.4a); (g) moment vs. 
curvature at the end of a longitudinal beam (section 2-2 in Figure 8.4a); (h) moment vs. 
curvature at the end of a transverse beam (section 3-3 in Figure 8.4a); (i) stress vs. strain 
in a concrete fiber at the base of a column (section 1-1 in Figure 8.4a); (j) stress vs. strain 
in a reinforcing steel fiber at the base of a column (section 1-1 in Figure 8.4a). 



www.manaraa.com

315 
 

8.4.2. Non-sequential model updating 

The computational demand of the estimation framework presented in Section 8.3 

is considerable because ( )2 1nθ +  FE models (the number of SPs) need to be run from 

the 1t  to kt  ( 1, ,k N= 
 with N =  number of data samples of the earthquake input 

excitation) when updating the modeling parameters at time kt . Recall that the response of 

the nonlinear FE model is history-dependent, therefore when updating the model at time 

kt  the FE model needs to be run from time 1t  to kt . Three approaches to reduce the 

computational burden are proposed and discussed in this section. These methodologies 

are referred to as non-sequential because they do not need to perform the estimation 

process at every time step of the input earthquake excitation. All the analyses in this 

section consider the case of 0
ˆ 1.4 true=θ θ  for EQ1. Results for other initial mean estimates 

and for EQ2 were also analyzed and found similar to and consistent with those presented 

in this chapter, but are not shown herein because of space limitation. The purpose of this 

section is to investigate the robustness, efficiency, and computational cost of the 

proposed non-sequential model updating schemes and compare them with the results 

obtained when the FE model is updated at every time step. 

8.4.2.1. Non-cumulative innovation approach 

One approach to reduce the computational cost of the proposed nonlinear FE 

model updating framework is to update the FE model every 1D >  time steps ( D : 

updating step parameter) and only consider the output measurements at those time steps 

to construct the innovation ( 1ˆk k k−−y y ), i.e., modeling parameters are updated at time 
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steps k k D= +  instead of at time steps 1k k= +  (Figure 8.10a). This approach might 

considerably reduce the computational burden of the nonlinear FE model updating 

framework because most of the computational resources are consumed when running the 

FE models. The main disadvantage of this approach is that the measurements between 

updating samples are not taken into account, and consequently, a large part of the 

information contained in the vibration data is missed and not considered when 

minimizing the discrepancy between the recorded and estimated output measurements. 

However, the accelerometers used in earthquake engineering applications have sampling 

frequencies 50sf Hz≥ , therefore the amount of data considered to estimate the modeling 

parameters using this non-cumulative approach might still be enough to accurately update 

the nonlinear FE model if the variable D  is not set very large. Values 5D =  and 3D =   

are considered to study this non-cumulative innovation approach. 

 
Figure 8.10: Approaches for non-sequential model updating (a) non-cumulative 
innovation approach, (b) cumulative innovation approach, (c) earthquake input motion 
and time-window for updating, (c) Husid plot and time-window for updating. 

 



www.manaraa.com

317 
 

8.4.2.2. Cumulative innovation approach 

A second approach of non-sequential updating also consider updating the FE 

model every 1D >  time steps, but it takes into account all the output measurements from 

2k D− +  to 1k +  when  constructing the innovation vector and updating the model at 

time step 1k +  (Figure 8.10b). This scheme allows to minimize the discrepancies 

between the estimated and actual output measurements at time steps 2k D− +  to 1k + , 

although only considers updating the FE model at time step 1k + . Defining the 

augmented output measurement vector 1
2 1 1, , , ,

T D nT T T T y
k D k k k

×
− + − + = ∈ Y y y y y

 

, the 

measurement covariance matrix, the cross-covariance matrix, and the Kalman gain can be 

computed, respectively, by 

 ( ) ( ) ( )
2 1

11 11 2 1 2 1 2
1

ˆ ˆˆ
n T

i ii
c kk kk k D k k D k k D

i
W

+

++ ++ − + + − + + − +
=

=    − − +      ∑YYP Y Y R 

 
  

θ

Y Y  (8.7a) 

 ( ) ( ) ( )
2 1

1 1 1 21 2 1 1
1

ˆˆ ˆˆ
n T

i ii
c k k k k Dk k D k k N

i
W

+

+ + + − ++ − + + − +
=

  = − −    ∑θYP θ Y




θ

ϑ Y  (8.7b) 

 ( ) 1

1 1 2 1 2k k k D k k D

−

+ + − + + − += θY YYK P P  

  (8.7c) 

where ( ) 1
2 1 11

ˆ ˆ ˆ ˆ ˆ, , , ,
T D ni T T T T y

k D k k kk
×

− + − ++
 = ∈ 



 Y Y Y Y Y = augmented output measurement 

vector corresponding to the SP ( )
1

ˆ i
k+ϑ , which includes the responses from time steps 

2k D− +  to 1k +  and [ ]1 2 1, , , D n D ny y
k k D k kdiag ×
+ − + += ∈R R R R

  . 1 2
ˆ

k k D+ − +
YYP  

, 

1 2
ˆ

k k D+ − +
θYP 

, and 1k+K  replace 1
ˆ

k k+
yyP , 1

ˆ
k k+
θyP , and 1k+K , respectively, in Figure 8.2, while 

other expressions remain identical. As in previous approach, values 5D =  and 3D =  are 

considered to study the cumulative innovation approach. 
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8.4.2.3. Time-window update 

The information required to update the modeling parameters is mostly contained 

in the data of the strong motion part of the earthquake excitation, therefore only 

input/output data corresponding to that time-window can be considered to estimate the 

modeling parameters and update the nonlinear FE model. The time-window considered to 

update the nonlinear FE model is defined here as the time interval between 0.5% and 

90% of the Arias Intensity ( AI ) (Arias 1970) as shown in Figure 8.10c and Figure 8.10d. 

The lower bound 0.5% is considered because data contained in the small amplitude part 

of the excitation contains information about the initial stiffness (linear-elastic) related 

parameters, and consequently these parameters converge still with input/output data from 

low-amplitude excitation (Astroza et al. 2015, Ebrahimian et al. 2015). The upper bound 

90% is chosen to include the higher seismic demands and therefore the most likely time 

interval to include nonlinear response behavior of the structure. Since there are two 

components of earthquake base excitation, the time window is defined by the lowest 

lower bound and the highest upper bound. For the ground acceleration records of EQ1 

and EQ2 the times corresponding to 0.5% AI  and 90% AI  and the time-window used to 

update the nonlinear FE model are summarized in Table 8.3. Using the time-window 

approach only 325N =  and 292N =  instead of 750N =  and 600N =  are used to 

update the FE model for EQ1 and EQ2, respectively. All analyses of this section were 

conducted using a desktop workstation with an Intel Xeon CPU X5660 2.66-GHz 

processor and 48-GB random-access memory. 
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Table 8.3: Times corresponding to 0.5% and 90% of the Arias intensity and time-
window used to update the FE model. 

EQ Component t (0.5% IA)  
[sec] 

t (90% IA)               
[sec] 

Time-window 
[sec] 

EQ1 
360° 2.36 7.94 

[2.16,8.64] 
90° 2.16 8.64 

EQ2 
EW 2.72 8.54 

[2.72, 8.54] 
NS 3.04 8.20 

8.4.2.4. Results of non-sequential updating 

Table 8.4 summarizes the final estimates of the mean of the modeling parameters 

obtained by the different non-sequential estimation approaches proposed above for EQ1 

and 0
ˆ 1.4 true=θ θ . In addition, the CPU time required by each estimation procedure, 

including the sequential approach presented in Section 8.4.1, is also included to compare 

the computational cost of the different approaches. 

Table 8.4: Final estimates of the mean of the modeling parameters obtained with non-
sequential updating procedures for EQ1 and 0

ˆ 1.4 true=θ θ . 

Case Updating method 
CPU 
time 
(s) 

Final estimates of the mean of the modeling parameters 

s
true
s

E
E

 y
true
y

f
f  true

b
b  0

0
true
R

R
 c

true
c

E
E

 
 

cc
 true

cc

f
f




 cc
 true
cc




 M
true
M

α
α

 
K

K
true
β
β

 

1 Sequential 755.1 1.00 1.00 1.00 1.00 0.98 0.98 1.03 1.08 0.99 

5 Non-cumulative 
innovation (D=5) 136.4 1.00 0.97 1.24 1.20 0.94 0.93 0.97 1.16 1.09 

6 Cumulative 
innovation (D=5) 135.8 1.00 1.00 1.00 1.01 0.99 1.00 1.08 1.02 1.00 

7 Non-cumulative 
innovation (D=3) 186.4 1.00 1.00 1.02 0.98 1.00 1.00 1.10 1.06 0.99 

8 Cumulative 
innovation (D=3) 190.3 1.00 1.00 0.98 0.99 0.99 0.98 1.02 1.13 0.99 

9 Time-window 231.8 1.00 1.01 1.00 1.01 1.00 0.97 1.00 0.93 1.04 

The computational cost of all the non-sequential updating procedures is 

considerably lower than that of the sequential procedure presented in Section 8.4.1. Non-
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cumulative and cumulative innovations approaches have very similar computational cost 

for a fixed value of D , and obviously their CPU time increases as D  decreases. The CPU 

time of non-cumulative approaches is about 18% and 25% for 5D =  and 3D = , 

respectively, of the CPU time of the sequential procedure. Time-window approach 

reaches about 30% of the CPU time of the sequential updating method. Non-cumulative 

innovation approach with 5D =  does not provide accurate estimates of parameters b , 0R

, and Mα , with relative errors higher or equal than 16%, while estimation of parameters 

cE , ccf ′ ,  and Kβ  also increases their relative errors noticeably compared to the sequential 

approach, reaching values higher than 7%. These results clearly show that skipping 

output data in the updating of the nonlinear FE model have detrimental effects in the 

accuracy of the estimation of modeling parameters which are less sensitive to the 

measured response quantities and/or those parameters that are activated only in limited 

time frames, such as post-yield parameters of the reinforcing steel, which are activated 

when the steel fibers undergo large strains when the nonlinear response of the structure is 

accentuated. However, when the non-cumulative approach with 3D =  is considered, the 

estimation results are as good as in the case of sequential updating. 

When measured response quantities corresponding to the time steps at which the 

nonlinear FE model is not updated are included in the innovation vector, i.e. cumulative 

innovation approach, the performance of the estimation framework improves 

considerably and the final estimates of mean and covariance of the modeling parameters 

are as accurate as when the model is updated at every time step. Very good estimation 

results are obtained using the cumulative innovation approach for 5D =  and 3D = . 
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Finally, the time-window approach also provides accurate final estimates of the modeling 

parameters, comparable to the results obtained using sequential updating. The time-

window defined between 0.5% AI  and 90% AI  contains enough information about 

modeling parameters governing the initial linear-elastic response and nonlinear response 

of the structure, therefore the values of these parameters are successfully estimated 

provided that they are sensitive enough to the measured response quantities. Time 

histories of the estimates of the a posteriori mean of the modeling parameters for the 

three non-sequential procedures are presented in Figure 8.11. The estimates of the 

modeling parameters, which are normalized by their corresponding true parameter values, 

converge to stable values and accurate estimation of the modeling parameters is achieved 

for cumulative innovation, non-cumulative innovation with 3D = , and time-window 

approaches as aforementioned. The time of convergence of the different modeling 

parameters is practically the same as in the case of sequential updating (Figure 8.7). Since 

the information of some modeling parameters is contained in a short time frame, do not 

taking into account the measured response quantities in many time steps implies 

degrading effects in the performance of the estimation. This is the reason why non-

cumulative approach with 5D =  is not able to accurately estimate some modeling 

parameters, such as b  and 0R  which are exercised only in the time window [3.5 – 4.5] 

sec of EQ1. 
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Figure 8.11: Time histories of the mean estimates of the modeling parameters using 
different non-sequential procedures for EQ1 and 0

ˆ 1.4 true=θ θ . 

The RRMSEs between the true measured responses and their counterparts 

obtained using the final estimates of the modeling parameters ( ˆ
Nθ ) for EQ1 and 

0
ˆ 1.4 true=θ θ  are shown in Table 8.5. Non-cumulative innovation approach with 5D =  

has the poorest performance with RRMSEs ranging between 6.18% and 7.99%. All the 

other non-sequential approaches perform very similar to the sequential approach, with 

RRMSEs between 1% and 3%. The use of cumulative innovation and time-window 

approaches are computationally very efficient and provides accurate estimates of the 

modeling parameters, which in turn implies low RRMSEs between the true responses and 

responses based on ˆ
Nθ . 
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Table 8.5: Relative RMS errors (in %) of the output measurements obtained with non-
sequential updating procedures for EQ1 and 0

ˆ 1.4 true=θ θ . 

Case Updating method 
Output measurement 

1 3
t

L=y q  2 3
t
T=y q  53

t
L=y q  54

t
T=y q  5 6

t
L=y q  6 6

t
T=y q  

1 Sequential 1.21 1.17 1.32 1.85 1.69 1.75 

5 Non-cumulative 
innovation (D=5) 6.99 6.18 6.36 7.23 7.99 7.34 

6 Cumulative 
innovation (D=5) 1.26 0.94 0.95 1.35 1.25 1.20 

7 Non-cumulative 
innovation (D=3) 2.11 1.86 1.83 3.27 2.30 2.15 

8 Cumulative 
innovation (D=3)  1.43 1.00 1.07 1.52 1.47 1.32 

9 Time-window 1.87 1.87 1.98 2.47 2.18 2.36 

8.4.3. Structural response recorded by heterogeneous sensor arrays 

Nowadays, the most common instrumentation of civil structures consists of 

accelerometer arrays, however considering the emergence and advances in low-cost and 

high-quality sensor technology, measurement of other response quantities, such as 

displacements and strains, are becoming more feasible and affordable. The analysis of 

potential advantages of using heterogeneous sensor arrays for DID purposes is important. 

In this section the use of heterogeneous sensor arrays and its effects on estimation results 

are explored. Two cases of heterogeneous sensor arrays are considered. First (Case 10), 

the relative displacements at the roof level of the building, which in practice can be 

measured using GPS antennas, are considered in addition to the six accelerations 

responses considered before. It is assumed that the displacements are recorded in both 

directions and at the same location where the acceleration responses are measured (see 

Figure 8.4a). A 5 mm RMS zero-mean AWGN is used to pollute the simulated 

displacement responses. In the estimation, the diagonal entries of R  corresponding to the 
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displacement measurements assume a standard deviation of 3 mm. The second case (Case 

11) considers the measurement of the strain, which in practice can be measured using 

strain gauges or fiber optic sensors, in concrete and reinforcing steel at the bottom of a 

corner column (section 1-1 in Figure 8.4a) in addition to the accelerations responses 

considered in Section 8.4.1. A 0.5 mm/m RMS zero-mean AWGN is used to pollute the 

simulated strain responses. In this case, for the estimation a standard deviation of 0.3 

mm/m is taken for the diagonal entries of R  corresponding to the strain measurements. A 

third case (Case 12) with only acceleration measurements is considered for comparison 

purposes. Here the acceleration responses in both directions at the 3rd, 4th, 5th, and roof 

levels are considered. For the three cases the same magnitude of output measurement 

noise for the accelerations responses as in Section 8.4.1 is considered, i.e., 1.0%g RMS 

zero-mean AWGNs are used to pollute the simulated acceleration responses and in the 

estimation phase 0.5%g RMS is assumed for the diagonal entries of R  corresponding to 

the acceleration measurements. It is noted that the three cases considered in this section 

use 8 sensor output channels and that the levels of output measurement noise are within 

values expected for the different types of sensors used currently for earthquake 

engineering applications. 

Table 8.6 shows the final mean estimates of the modeling parameters normalized 

by their corresponding true values for EQ1 and 0
ˆ 1.4 true=θ θ . When displacement or 

strain output measurements are considered, in addition to the six accelerations, to update 

the nonlinear FE model (Cases 10 and 11, respectively) more accurate estimation results 

of the modeling parameters are obtained. A maximum relative error of 3% (for Mα ) 
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among all the modeling parameters is achieved when the relative roof displacements and 

strains at the bottom of a column are included as recorded measurements. When only 

accelerations are recorded (Case 12), the relative errors of the modeling parameters are 

similar to those reported in Section 8.4.1 when six acceleration time histories are 

considered as output measurements. For Case 12, the relative error of the final estimates 

of the modeling parameters are consistently higher than those obtained in Cases 10 and 

11 when heterogeneous sensor arrays are used to record output responses. 

Table 8.6: Final estimates of the mean of the modeling parameters obtained using 
heterogeneous arrays for EQ1 and 0

ˆ 1.4 true=θ θ . 

Case Sensor array 
Final estimates of the mean of the modeling parameters 

s
true
s

E
E

 y
true
y

f
f  true

b
b  0

0
true
R

R
 c

true
c

E
E

 
 

cc
 true

cc

f
f




 cc
 true
cc




 M
true
M

α
α

 
K

K
true
β
β

 

10 
6 relative accelerations 

+ 2 relative 
displacements 

1.00 1.00 1.00 1.00 0.98 0.98 1.02 1.03 0.99 

11 6 relative accelerations 
+ 2 strains 1.00 1.00 1.00 1.00 0.98 0.99 1.02 1.03 1.01 

12 8 relative accelerations 1.01 1.00 1.02 1.02 0.99 0.91 1.02 1.03 1.00 

8.4.4. Adaptive filtering 

The performance and convergence of the UKF might be significantly affected by 

the noise covariance matrices kQ  and 1k+R , therefore they need to be selected 

appropriately (Simon 2006, Patwardhan et al. 2012). The proposed formulation for 

parameter estimation of mechanics-based nonlinear FE models uses a process noise kγ  to 

drive the time-invariant modeling parameter θ , i.e., kγ  is an artificial noise without 

physical meaning. The noises driving different modeling parameters to be estimated are 
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uncorrelated, i.e., kQ  is a diagonal matrix whose diagonal entries are the process noise 

variances associated with the corresponding parameters to be estimated. Based on 

previous studies (Astroza et al. 2015), good estimation results are obtained if kQ  is 

assumed time-invariant ( T
k E  = =  Q Q γγ ) with the diagonal entries computed as 

( )2
0

ˆ , 1,...,ic i nθ=θ  with 3 51 10 ,1 10c − − ∈ × ×  . On the other hand, 1k+R  represents the 

level of noise contained in the output measurements, which can be initially estimated 

according to the type of sensor, DAQ system, and engineering judgment. An accurate 

estimation of the measurement noise is desirable; otherwise, if the assumed measurement 

noise variances deviate significantly from the actual level of noise, the parameter 

estimates might be biased. 

In Sections 8.4.1 and 8.4.3 different cases of accelerometer and heterogeneous 

sensor arrays were investigated. The measurement noise covariance matrix, 1k+R , was 

assumed diagonal and time-invariant and, to mimic real world applications, the values of 

the measurement noise variances (diagonal entries of R ) were taken different to the 

actual variances of the noises used to pollute the simulated responses. In the estimation 

phase, standard deviations in the range [50 − 60]% of the actual values were assumed for 

acceleration, displacement, and strain response measurements, and accurate estimation of 

the modeling parameter and successful updating of the nonlinear FE model were 

obtained. This scenario is expected to be valid in many practical applications when it is 

possible to have a fairly good estimation of the standard deviation of the output noise. 

However, in some real world applications a good estimation of standard deviation of 
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output measurement noise might not be possible, for example, because of sensor 

malfunctioning or unwanted surrounded noise. In this section, the detrimental effects of 

poor assessment of the standard deviation of output measurement noise are shown and an 

adaptive filtering approach (filter tuning) to solve this problem is presented and verified. 

8.4.4.1. Dual estimation approach 

Assuming that the measurement noises in different sensors are uncorrelated, 1k+R  

can be expressed as a diagonal matrix with diagonal entries corresponding to the 

associated measurement noise variances, i.e., ( ) ( )2
1 1 1k k kdiag diag+ + += =R σ r . A dual 

estimation approach can be used to estimate the measurement noise covariance in 

addition to the modeling parameters (Song et al. 2007). At every time step, a master filter 

(MF) is used to estimate the modeling parameter vector θ  using the output noise 

covariance estimated by a parallel slave filter (SF). The MF solves the nonlinear state-

space model described in Equation (8.4) and the SF uses the innovation (or residual), 

11 1ˆkk k k k++ += −e y y , generated by the MF to estimate the output noise variances (diagonal 

entries of 1k+R ). This approach of adaptive filtering corresponds to a covariance 

matching technique, in which the goal of the SF is to make the innovations compatible 

with their expected covariance (Mehra, 1972). Figure 8.12 and Figure 8.13 show the 

pseudo-code and block diagram of the proposed dual filtering approach. The additional 

computational cost added by the SF filter is minimal because it is a linear Kalman filter. 
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Figure 8.12: Pseudo-code of the proposed approach for adaptive filtering. 

Initialization: 
0θ̂ , 0

ˆ θθP              : Initial estimates of mean vector and covariance matrix of modeling parameters 
Q                        : Process noise covariance of master filter (MF) 

0r̂ , 0
ˆ rrP               : Initial estimate of mean vector and covariance matrix of output noise variances 

T , U                  : Process and measurement noise covariance of slave filter (SF) 
for 0,1, , 1k N= −  Loop over time step 
MF Prediction:  

(i)     ( ) i=1,...,2 1i
k nθ +ϑ  Generate SPs 

(ii)     ( ) ( )
1

i i
k k+ =ϑ ϑ  State eq. (MF) 

(iii)    1
ˆ ˆ

k k k k+ =θ θ   ;  1
ˆ ˆ

k k k k+ = +θθ θθP P Q  A priori mean and 
covariance (MF) 

(iv)    ( ) ( )( )1 1 1 1,i i g
k k k k+ + + += h UY ϑ  Measurement eq. (MF) 

(v)       ( ) ( )
2 1

1
11ˆ

n

i

i i
m kk k W

θ +

=
++ = ∑y Y  Predicted output (MF) 

(vi)      1 1 1ˆk k k k+ + += −e y y  Innovation 

(vii)     ( )1 1 1
T

k k kdiag+ + +=z e e  Diagonal of innovation 
covariance 

SF Prediction:  
(viii) 1ˆ ˆk k k k+ =r r   ;   1

ˆ ˆ
k k k k+ = +rr rrP P T  A priori mean and 

covariance (SF) 

(ix)   ( ) ( ) ( )
2 1

1
1 11 1 1 1ˆˆ ˆ ˆ

n

i

Ti i i
c k kk k k k k k k kdiag W

θ +

=
+ ++ + + ++

    = − −     
∑z r y yY Y  Predicted diagonal of 

innovation covariance (SF) 

SF Correction:  
(x)    1 1

ˆ ˆ
k k k k+ + +=zz rrP P U   ;  1 1

ˆ ˆ
k k k k+ +=rz rrP P  Estimated auto- and cross-

covariance (SF) 

(xi)   ( ) 1

1 1 1
ˆ ˆ

k k k k k

−

+ + +=r rz zzK P P  Kalma gain (SF) 

(xii)  ( )1 111 1 1ˆ ˆ ˆk k kkk k k k + +++ + + + −= rr r K z z  A posteriori mean (SF) 

(xiii) ( )1 11 1 1 1
ˆ ˆ ˆ T

k kk k k k k k+ ++ + + +−=rr rr r zz rP P K P K  A posteriori covariance (SF) 

(xiv) ( )1 1 1
ˆ ˆk k kdiag+ + +=R r  Estimated measurement 

noise covariance 
MF Correction:  

(xv)     ( ) ( ) ( )
2 1

1
1 1 11 1 1

ˆ ˆˆ ˆ
n

i

Ti i i
c k k kk k k k k kW

θ +

=
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end for  
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Figure 8.13: Diagram of the adaptive filtering structure. 

 

8.4.4.2. Results of adaptive filtering 

To verify the proposed adaptive filtering approach, two cases are considered. The 

first one considers the RC frame subjected to EQ1 with 0
ˆ 1.4 true=θ θ  and six acceleration 

measurements. Unlike to Case 1 presented in Section 8.4.1, here the output measurements 

are polluted with zero-mean AWGN with 0.7, 0.2, 1.5, 0.3, 0.8, and 1.5%g RMS for 
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Tq , respectively. In the estimation, all the diagonal entries of 

1k+R  assume an initial standard deviation of 0.5%g, i.e., RMS values in the range [33 − 
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respectively, while zero-mean AWGN with 7 and 1 mm RMS are used to contaminate the 

simulated displacement responses in longitudinal and transverse directions, respectively. 

In the estimation, diagonal entries of 1k+R  corresponding to acceleration and 

displacement responses assume an initial standard deviation of 0.5%g and 3 mm, 

respectively, i.e., RMS values in the range [33 − 300]% of the actual values are assumed.  

The estimation is conducted with and without using the adaptive filtering 

approach proposed. When the adaptive filtering approach is employed, the covariance 

matrices T  and U  of the SF are assumed time-invariant with diagonal entries equal to 

201 10−× . The initial covariance matrix of the measurement noise variances of the SF, 0
ˆ rrP

, is assumed to be diagonal with terms computed assuming a coefficient of variation of 

20% of the initial estimate of the mean 0r̂ , i.e., the diagonal entries of 0
ˆ θθP  are computed 

as 2
0̂( )ip r×  where 1, , yni = 

 and 0.20p = . 

Table 8.7 summarizes the final mean estimates of the modeling parameters 

normalized by their corresponding true parameter values with (Cases 14 and 16) and 

without (Cases 13 and 15) the adaptive filtering approach. For both cases (acceleration-

only and heterogeneous sensor arrays) the estimation of modeling parameters improves 

considerably when the adaptive filtering approach is employed. For the case of 

acceleration-only measurements, estimation of modeling parameters 0, , , ,cc ccb R f ′ ε  and 

Mα  enhance significantly when the adaptive filter approach is used. For the case of 

heterogeneous sensor array (accelerations and displacements), estimation errors of the 

modeling parameters are low even when the filter is not tuned, confirming results 

presented in Section 8.4.3 and verifying the robustness of the estimation approach to poor 
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estimation of measurement noise covariance when displacement measurements are 

considered to update the nonlinear FE model. Estimation of modeling parameters are 

even more accurate when the adaptive filtering approach is used, especially for 

parameters cE  and Mα . 

From the RRMSEs between the true measured responses and their counterparts 

obtained using the final estimates of the modeling parameters for EQ1 and 0
ˆ 1.4 true=θ θ  

with and without the adaptive filtering approach (Table 8.8) is also concluded that the 

proposed filter tuning method improves the update of the nonlinear FE model. Lower 

RRMSEs are obtained for all response measurements when the filter is tuned using the 

proposed approach. 

Table 8.7: Final estimates of the mean of the modeling parameters for EQ1 and 
0

ˆ 1.4 true=θ θ  obtained with and without the proposed adaptive filtering approach. 

Case Sensor array Adaptive 
filtering 

Final estimates of the mean of the modeling parameters 

s
true
s

E
E

 y
true
y

f
f  true

b
b  0

0
true
R

R
 c

true
c

E
E

 
 

cc
 true

cc

f
f




 cc
 true
cc




 M
true
M

α
α

 
K

K
true
β
β

 

13 
6 abs. acc. 

No 1.01 0.98 1.10 1.14 0.95 0.85 0.90 1.19 1.02 

14 Yes 1.01 1.01 1.00 1.01 0.98 0.95 1.04 1.06 0.99 

15 
6 abs. acc. + 
2 rel. disp. 

No 1.00 1.00 1.00 1.00 0.98 0.99 0.93 1.10 0.99 

16 Yes 1.00 1.00 1.00 1.00 1.00 1.01 1.07 1.02 0.99 
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Table 8.8: Relative RMS errors (in %) of the output measurements for EQ1 and 

0
ˆ 1.4 true=θ θ  obtained with and without the proposed adaptive filtering approach. 

Case Sensor array Adaptive 
filtering 

Output measurement 

3
t

Lq  3
t
Tq  5

t
Lq  5

t
Tq  6

t
Lq  6

t
Tq  6Lq  6Tq  

13 
6 abs. acc. 

No 5.24 3.60 3.73 4.70 5.56 4.80 - - 

14 Yes 1.89 1.68 1.66 2.40 2.65 2.20 - - 

15 
6 abs. acc. + 
2 rel. disp. 

No 1.78 1.59 1.71 2.40 2.25 2.28 1.23 1.03 

16 Yes 1.36 0.84 0.74 1.38 1.26 1.18 0.43 0.27 

 

8.4.5. Effect of input measurement noise 

The proposed FE model updating approach can be adversely affected by 

unmeasured random excitation because the formulation does not explicitly account for 

this. The effects of input measurement noise in the performance of the nonlinear FE 

model updating framework are investigated in this section. To this end, the response of 

the frame is simulated using a noise-free input excitation, but in the estimation phase 

different levels of input measurement noise, which is modeled as zero-mean AWGN, are 

employed to pollute the noise-free input excitation. Levels of input measurement noise 

ranging from 0.3 to 1.5%g RMS are used to contaminate the earthquake input motion. 

This input noise is included to represent unmeasured random excitation and/or noise in 

the recorded input excitation due to sensor and DAQ errors. For all the analyses in this 

section, the outputs measurements used in the estimation correspond to the simulated 

responses contaminated by 1.0%g RMS AWGN and the measurement noise covariance 

matrix, 1k+R , is assumed time-invariant with diagonal entries defined by a standard 

deviation of 0.5%g. Table 8.9 lists the final mean estimates of the modeling parameters 
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normalized by their corresponding true values for EQ1, 0
ˆ 1.4 true=θ θ , and the four levels 

of input noise considered. The input noise, which is considered AWGN, is filtered by the 

nonlinear structure and therefore becomes a colored noise in the output measurements. 

Since the proposed approach considers white Gaussian output measurement noise in its 

formulation, it might be expected that colored output noises bias the parameter estimation 

results. However, for all levels of input noise the parameter estimation results are very 

good and comparable with those obtained when no input measurement noise is 

considered (see Section 8.4.1). The final estimates of the mean of the modeling 

parameters converge to their true values in most of the cases, except cc  for 0.5% and 

1.5%g RMS input noise (with relative errors of 11% and 21%, respectively) and Mα  for 

1.0%g RMS input noise (with a relative error of 13%). As the input noise increases, the 

estimation of those parameters for which the measured responses contain less information 

( , , ,cc M ccf ′ε α  and 0R ) loses accuracy. To further analyze the effects of input 

measurement noise, the RRMSE between the noise-free simulated responses ( y ) and their 

counterparts computed with the final estimates of the modeling parameters ( ˆ
Nθ ) and the 

noise-free input are shown in Figure 8.14. The RRMSE between the noise-free simulated 

responses and their counterparts computed with the initial estimates of the modeling 

parameters ( 0θ̂ ) are also included. The successful and accurate updating of the nonlinear 

FE model is clearly evidenced. RRMSEs for 0θ̂  range between 70 and 107% and after the 

model is updated the RRMSEs for ˆ
Nθ  decrease to values lower than 8%, which confirms 

the effective updating of the model even for high levels of input noise. As the level of 
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input noise increases, the accuracy in estimating the modeling parameters decay and 

consequently the RRMSE of the different measured responses increase. 

Table 8.9: Final estimates of the mean of the modeling parameters for EQ1, 0
ˆ 1.4 true=θ θ

, and different levels of input noise. 

Case 
Input noise 

level  
(%g RMS) 

Final estimates of the mean of the modeling parameters 

s
true
s

E
E

 y
true
y

f
f  true

b
b  0

0
true
R

R
 c

true
c

E
E

 
 

cc
 true

cc

f
f




 cc
 true
cc




 M
true
M

α
α

 
K

K
true
β
β

 

1 0.0 1.00 1.00 1.00 1.00 0.98 0.98 1.03 1.08 0.99 

17 0.3 1.00 1.00 1.00 1.00 0.98 1.00 0.97 1.04 1.00 

18 0.5 1.01 1.00 1.00 0.99 0.97 0.98 0.89 1.01 1.01 

19 1.0 1.00 1.00 0.99 0.97 1.00 0.96 1.02 0.87 1.04 

20 1.5 1.00 0.98 0.98 0.93 1.00 0.94 0.79 1.00 1.01 

 
 

 
Figure 8.14: Relative RMS error between true responses and estimated responses using 

final parameter estimates and noise-free input for different levels of input measurement 
noise, EQ1, and 0

ˆ 1.4 true=θ θ . 
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8.5. Conclusions 

This chapter studied and evaluated the performance of a novel framework for 

nonlinear structural FE model updating. The framework uses recorded input/output data 

to estimate unknown modeling parameters of advanced mechanics-based nonlinear FE 

modeling techniques using the UKF. The updated FE model provides accurate and 

complete information about potential damage in the structure, including loss of stiffness, 

strength degradation, and history of response nonlinearities. 

Accuracy, convergence, and robustness of the framework were investigated using 

numerically simulated response data of a realistic 3D 5-story 2-by-1 bay RC frame 

building subjected to bi-directional earthquake excitation. Parameters characterizing the 

nonlinear material constitutive laws and Rayleigh damping characteristics of the FE 

model are successfully estimated when limited response data (6 acceleration time 

histories) are available. Excellent results are obtained for two different earthquake 

excitations and two initial estimate of the mean the modeling parameters. 

Three non-sequential updating procedures −so called non-cumulative innovation, 

cumulative innovation, and time-window approaches− to reduce the computational 

burden of the estimation framework were presented and examined. The proposed non-

sequential approaches reduce the computational cost by about 70−80% as compared to 

the sequential updating approach. Accurate estimation results are achieved with 

cumulative innovation and time-window approaches, while non-cumulative approach 

requires a small updating step parameter ( D ) to properly estimate the modeling 

parameters. 
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The use of heterogeneous sensor arrays was explored and its effects on the 

identifiability of the modeling parameters were discussed. It is found that the fusion of 

acceleration and displacement and strain response data improves considerable the 

accuracy of the parameter estimation results because sensitivity of modeling parameters 

to different types of recorded responses may vary significantly, and consequently, 

heterogeneous sensor data are more informative than acceleration-only data. 

An adaptive filtering (filter tuning) approach based on a covariance matching 

technique is proposed to estimate the measurement noise covariance in addition to the 

time-invariant modeling parameters. Favorable effects of the proposed adaptive filtering 

approach are observed, especially when the guess of the standard deviations of the output 

measurement noise is far from the actual level of measurement noise and only 

acceleration outputs are recorded. 

Because the model updating framework does not explicitly account for 

unmeasured random excitations, the potential detrimental effects of input noise in the 

estimation results were studied. It is concluded that the framework is very robust to input 

noise, achieving good estimation results even for unrealistically high levels of input 

noise. 
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CHAPTER 9 

PERFORMANCE COMPARISON OF KALMAN−BASED 

FILTERS FOR NONLINEAR STRUCTURAL FINITE 

ELEMENT MODEL UPDATING 

9.1. Introduction 

Finite element (FE) model updating is the most popular model-based method for 

condition assessment and damage identification (DID) of civil structures using input-

output or output-only vibration data. In this methodology an initial FE model of the 

structure is updated by tuning a set of unknown parameters of the model such that the 

discrepancies between the model predictions and the experimental data or properties 

derived therefrom are minimized. FE model updating techniques and their use for 

structural health monitoring (SHM) purposes have attracted significant attention from the 

structural engineering community. Several books (Friswell and Mottershead 1996, 

Marwala 2010) and review papers (e.g., Fritzen et al. 1998, Mottershead and Friswell 

1993, Teughels and De Roeck 2005, Simoen et al. 2014) have summarized the research 

efforts and advances in the field of FE model updating. 

341 
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In general, data recorded from force or ambient vibration tests are used to update 

the FE model, process that can be conducted in the frequency (e.g., Imregun et al. 1995, 

Sipple and Sanayei 2014), time (e.g., Chen and Feng 2009, Asgarieh et al. 2014, Astroza 

et al. 2015a, Ebrahimian et al. 2015), or modal (e.g., Teughels and De Roeck 2005, 

Simoen et al. 2014) domains. Furthermore, the FE model updating problem can be 

tackled in a deterministic (e.g., Zarate and Caicedo 2008, Li et al. 2014) or probabilistic 

manner (e.g., Simoen et al. 2013, Erdogan et al. 2014). In the former, point estimates for 

the unknown parameters of the FE model are determined, while in the latter the 

uncertainty in the estimation of the parameters is also quantified. A probabilistic 

approach is desirable because it quantifies the uncertainty on the prediction of different 

response quantities. 

Most research on damage identification of civil structures has focused on 

employing linear FE models and using modal properties (natural frequencies and mode 

shapes) to define the objective functions in the optimization problem. In this approach, 

linear FE models are calibrated using low-amplitude vibration data recorded before 

(baseline or reference model) and after a damaging event, and the damage is defined as 

the reduction of effective stiffness over one or more regions of the structure. 

Parameterization of the FE model is crucial to avoid ill-conditioning problems in the 

optimization process, and the standard and most widely accepted solution is to limit the 

number of updating parameters by grouping them for different sets of adjacent elements 

(Simoen et al. 2014). In spite of its popularity in the structural engineering field, linear 

FE models cannot provide any information about loss of strength, loss of ductility 
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capacity, and/or nonlinearities experienced by the structure, which are required for a 

comprehensive condition assessment of the structure and collapse risk evaluation. 

To overcome this limitation, in the last years important efforts and progresses 

have been made in the field of nonlinear FE model updating of civil structures (e.g., 

Ching et al. 2006, Nasrellah and Manohar 2011, Liu and Au 2013, Song and Dyke 2013, 

Omrani et al. 2013, Yang et al. 2014), topic that was first explored in the pioneering work 

by Distefano and coworkers in the 1970's (Distefano and Rath 1975a, Distefano and Rath 

1975b, Distefano and Pena-Pardo 1976). These studies used simplified models with 

lumped nonlinearities, defined by empirical nonlinear models, such as the Bouc-Wen 

model, to describe the hysteretic behavior. However, such models are not typically used 

in state-of-the-art mechanics-based structural FE modeling and response simulation 

because they are not adequate to capture the actual nonlinear behavior of large and 

complex civil structures. In addition, these models are not parameterized by physical 

properties, and therefore require calibration on a case-by-case basis. Some methodologies 

to update mechanics-based nonlinear FE models of structures using input/output data 

recorded during damage-inducing events have been recently proposed (Shahidi and 

Pakzad 2014, Astroza et al. 2015a, Ebrahimian et al. 2015). The main benefit of using 

advanced nonlinear FE models is that adequately calibrated nonlinear models can capture 

the complex damage mechanisms in a structural system, providing accurate information 

about presence, location, type, and extent of damage in the structure. The updated 

mechanics-based nonlinear FE model can be used for rapid post-event condition 

assessment and provides a powerful tool to support the decision-making for emergency 

response, post-disaster rehabilitation, maintenance, and inspection of civil structures. 
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The use of recursive filtering techniques to update mechanics-based nonlinear FE 

models has shown promising results. Astroza et al. (2015a) and Ebrahimian et al. (2015) 

proposed a framework to update mechanics-based nonlinear FE models using the 

unscented Kalman filter (UKF) and the extended Kalman filter (EKF), respectively. Their 

application examples addressed the estimation of parameters describing the nonlinear 

material constitutive models of simple but realistic two-dimensional steel structures. 

Feasible and efficient formulations to update mechanics-based nonlinear FE 

models are required, such that they can be employed for large and complex civil 

structures. Furthermore, probabilistic approaches are desirable because they also provide 

a measure of the uncertainty in the estimates. The so-called Gaussian filters provide a 

good alternative to achieve this goal. Examples of these filters are the EKF, which is 

based on analytical-linearized approximation of the nonlinear state-space model, the 

UKF, a Jacobian-free filter based on statistical linearization, and the iterated EKF 

(IEKF), a modified version of the EKF with an approximate Gauss-Newton iterative 

scheme (Bell and Cathey 1993). Previous studies have compared the performance of the 

EKF and UKF in different types of applications, such as aerodynamic parameter 

estimation (Chowdhary and Jategaonkar 2010), chemical reactors (Geetha et al. 2014), 

spacecraft localization (Giannitrapani et al. 2011), structural dynamics of a single degree 

of freedom (Mariani and Ghisi 2007, Askari and Li 2016), and navigation systems (St-

Pierre and Gingras 2004). 

This chapter introduces the IEKF to update mechanics-based nonlinear FE models 

and then compares the performance of the EKF, IEKF, and UKF in terms of 

convergence, accuracy, robustness, and computational requirements. For the derivative-
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based filters (EKF and IEKF), the FE response sensitivities with respect to the modeling 

parameters to be estimated are required. To this end, the use of the direct differentiation 

method (DDM), which is an accurate and computationally efficient approach based on 

the exact (consistent) differentiation of the FE numerical scheme with respect to the 

unknown modeling parameters is investigated. A comprehensive comparison of the 

performance of the different filters is required to analyze their applicability to nonlinear 

structural FE model updating of large and complex civil structures. An application 

example using numerically simulated data of a realistic three-dimensional 5-story 2-by-1 

bay reinforced concrete (RC) frame building subjected to bi-directional earthquake 

excitation is presented to illustrate the performance of the different filters. 

9.2. The Kalman filter (KF) 

The KF is a well-known optimal recursive state estimator (linear minimum 

variance unbiased estimator) for state-space models described by linear process and 

measurement equations with additive white Gaussian noises (AWGN) 

 1k k k k k k k k k k+ = + + = + +x A x B u w A x b w  (9.1) 

 1 1 1 1 1 1 1 1 1 1k k k k k k k k k k+ + + + + + + + + += + + = + +y C x D u v C x d v  (9.2) 

where xn
k ∈x    = state vector, , , ,y xx x x u n nn n n n

k k k
×× ×∈ ∈ ∈A B C    and y un n

k
×∈D   

= state, input, output, and feed-through matrices, respectively, un
k ∈u   = deterministic 

input vector, 1
yn

k+ ∈y   = output measurement vector, xn
k ∈w   = process noise vector, 

1
yn

k+ ∈v   = measurement noise vector, and the subscript indicates the time step. 
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Definitions of xn
k ∈b   and 1

yn
k+ ∈d   follows directly from Equations (9.1) and (9.2), 

respectively. Noise processes kw  and 1k+v  are assumed to be white Gaussian with zero-

mean and covariance matrix kQ  and 1k+R , respectively, i.e., ( ),k kw 0 Q N  and

( )1 1,k k+ +v 0 R N . If Gaussian distribution is also assumed for the initial state, i.e. 

( ) ( )0 0|0 0|0
ˆˆ ,p = xxx x PN , the estimates of the expected value and covariance matrix of x  

can be recursively estimated by the following prediction-correction scheme (see Simon 

2006 for details), 

 1| | |ˆ ˆ ˆk k k k k k k k k k k+ = + = +x A x B u A x b  (9.3) 

 1| |
ˆ ˆ T

k k k k k k k+ = +xx xxP A P A Q  (9.4) 

 ( )1| 1 1| 1 1 1|ˆ ˆ ˆk k k k k k k k+ + + + + += + −x x K y y  (9.5) 

 1| 1 1| 1 1| 1
ˆ ˆ ˆ T

k k k k k k k k−+ + + + + +=xx xx yyP P K P K  (9.6) 

where 

 1| 1 1| 1 1 1 1| 1ˆ ˆ ˆk k k k k k k k k k k+ + + + + + + += + = +y C x D u C x d  (9.7) 

 1 1 1|ˆk k k k+ + += −e y y  (9.8) 

 1| 1 1| 1 1
ˆ ˆ T

k k k k k k k+ + + + += +yy xxP C P C R  (9.9) 

 1| 1| 1
ˆ ˆ T

k k k k k+ + +=xy xxP P C  (9.10) 

 ( ) 1

1 1| 1|
ˆ ˆ

k k k k k
−

+ + += xy yyK P P  (9.11) 

1ˆ k k+x  and  1
ˆ

k k+
xxP  denote the estimates of state vector and state covariance matrix 

at time step ( )1k +  given 1: 1 2, , ,
TT T T

k k =  u u u u  and 1: 1 2, , ,
TT T T

k k =  y y y y , 1|ˆ k k+y  = 

predicted output, 1k+e  = innovation, 1|
ˆ

k k+
yyP  = innovation covariance, 1|

ˆ
k k+
xyP  = cross-



www.manaraa.com

347 
 

covariance matrix, and 1k+K  = Kalman gain. Equations (9.3) and (9.4) are referred as the 

process update (prediction) and Equations (9.5−9.11) as the measurement update 

(correction). 1ˆ k k+x  and 1| 1ˆ k k+ +x  ( 1
ˆ

k k+
xxP  and 1| 1

ˆ
k k+ +
xxP ) are called predicted and corrected 

state estimates (state covariance matrices), respectively. More details on the KF can be 

found in Simon (2006). 

9.3. Problem formulation 

The discrete-time equation of motion of an n-DOF viscously-damped nonlinear 

FE model of a structure at time step (k+1) can be expressed as 

 ( ) ( ) ( ) ( ) ( )( )1 1 1 1 1,k k k k k+ + + + ++ + =M θ q θ C θ q θ r q θ θ p   (9.12) 

in which 1 1 1, , n
k k k+ + + ∈ =q q q 

  relative displacement, velocity, and acceleration 

vectors, respectively, n n×∈ =M  mass matrix, n n×∈ =C  damping matrix, 

( )( )1 1 , n
k k+ + ∈ =r q θ θ  history-dependent internal resisting force vector, n =number of 

degrees of freedom, nθ∈ =θ   vector of unknown time-invariant modeling parameters, 

1
n

k+ ∈ =p  dynamic load vector, which in the case of rigid base earthquake excitation 

takes the form 1 1
g

k k+ += −p M Lu  with =n r×∈L   influence matrix and 1
1

g r
k

×
+ ∈ =u   

input ground accelerations with r = number of base excitation components, and the 

subscript indicates the time step. 

From Equation (9.12) and the fact that the desired predicted response of the 

nonlinear FE model at time step ( )1k +  ( 1ˆ ny
k+ ∈y  ) can be written as a function of the 
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input excitation and the nodal displacement, velocity, and acceleration vectors (

1 1 1, ,k k k+ + +q q q  ), the predicted response of the nonlinear FE model to earthquake 

excitation at time step ( )1k +  can be expressed as (Astroza et al. 2015a, Ebrahimian et al. 

2015) 

 ( )1 1 1: 1 0 0ˆ , , ,g
k k k+ + +=y h θ u q q  (9.13) 

where ( )1k+ ⋅h  is the nonlinear response function of the nonlinear FE model at time 1kt + , 

( ) ( ) ( )1: 1 1 2 1, ,...,
TT T Tg g g g

k k+ +
 =   

u u u u     is the input ground acceleration time history from 

time 1t  to 1kt + , and 0 0, n∈q q   are the initial displacement and velocity conditions which 

are omitted hereafter to simplify the notation. 

The measured response of the structure ( yn∈y  ) can include different response 

quantities recorded by a heterogeneous sensor array and is related to the FE model 

predicted response ( ŷ ) by (Astroza et al. 2015a, Ebrahimian et al. 2015) 

 1 1 1ˆk k k+ + += +y y v  (9.14) 

where yn
k ∈ =v   prediction error assumed to be white Gaussian with zero-mean and 

covariance matrix kR , i.e., ( ),k kv 0 R N . Equation (9.14) accounts for model 

parameter uncertainty and uncertainty related to measurement; however, it does not 

account for model structure uncertainty (Simoen et al. 2014). Therefore, Equation (9.14) 

implicitly assumes that the nonlinear FE model can predict with reasonable precision the 

actual response of the structure of interest, which can be accomplished by using adequate 

mechanics-based nonlinear FE models with well calibrated material constitutive models 
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(e.g., Uriz et al. 2008, Martinelli and Filippou 2009, Ebrahimian et al. 2014). On the 

other hand, θ  contains unknown time-invariant modeling parameters, i.e., 

 1k k k+ = +θ θ w  (9.15) 

In other words, θ  is modeled as a random process according to the Bayesian 

approach and the evolution of θ  is described by a random walk process. Equation (9.14), 

which represents a linear process equation, and Equation (9.15), which represents a 

nonlinear measurement equation,  define the following nonlinear state-space model 

 1k k k+ = +θ θ w  (9.16) 

 ( )1 1 1 1: 1 1, g
k k k k k+ + + + += +y h θ u v  (9.17) 

where kw  and 1k+v  are mutually uncorrelated and uncorrelated between sampling times 

Gaussian processes with zero-mean and known covariance matrices kQ  and 1k+R , 

respectively, i.e., ( )~ ,k kw 0 QN  and ( )1 1~ ,k k+ +v 0 RN . A filtering technique can be 

used to recursively estimate at least the first two statistical moments of the unknown 

modeling parameter vector in the nonlinear state-space model [Equations (9.16) and 

(9.17)] using the input and measured output response of the system. In particular, the so-

called Gaussian-based filters for nonlinear systems can be employed for this purpose. In 

this chapter, the EKF, IEKF, and UKF, which are presented in Section 9.4, are used to 

recursively estimate the states (modeling parameters) of the nonlinear state-space model 

in Equations (9.16) and (9.17) knowing the input ( gu ) and measured output response of 

the system ( y ). Since the formulation described by Equations (9.16) and (9.17) does not 

take into account the effects of input noise, its potential detrimental effects on the 

parameter estimation results will be analyzed later on. 
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The application example in this chapter will deal with RC frame-type structures, 

which nonlinear behavior can be modeled using nonlinear mechanics-based distributed-

plasticity FE models (Taucer et al. 1991). In this modeling technique, uniaxial material 

constitutive laws, defined by time-invariant parameters, model the nonlinear stress-strain 

response of uniaxial material fibers, which are then used to obtain the response at the 

section, element, and structure levels. Figure 9.1 shows a schematic representation of the 

hierarchical discretization levels in distributed-plasticity FE models of RC frame-type 

structures. 

 
Figure 9.1: Hierarchical discretization levels in distributed-plasticity FE models of RC 
frame-type structures. 

9.4. Kalman filters for nonlinear FE model updating 

In the case of the nonlinear state-space model described by Equations (9.16) and 

(9.17), the KF algorithm can be applied to a linearized version of the model. Three 

different approaches to linearize the nonlinear measurement equation are studied in this 

chapter, leading to the well-known KF-based schemes EKF, IEKF, and UKF. The 

performance of the three filters is compared in terms of convergence, accuracy, 

robustness, and computational requirements. 
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A linearized version of Equations (9.16) and (9.17) can be expressed as (Lefebvre 

et al. 2005): 

 1k k k+ = +θ θ w  (9.18) 

 1 1 1 1 1 1k k k k k k+ + + + + += + + +y H θ d ρ v  (9.19) 

in which 1 1, ,k k+ +H d  and 1k+ρ  differ between different linearization strategies and will be 

derived for each filter independently. The vector 1
yn

k+ ∈ρ   represents errors related to 

the linearization of the measurement equation, modeled by a zero-mean Gaussian 

distribution with covariance matrix *
1

y yn n
k

×
+ ∈R  . The linearized state-space model 

described by Equations (9.18) and (9.19) is analogous to the linear state-space model 

described by Equations (9.1) and (9.2), and consequently can be solved using the KF 

algorithm presented in Section 9.2. 

9.4.1. Extended Kalman filter (EKF) 

In the EKF the nonlinear measurement equation [Equation (9.17)] is linearized 

around the latest predicted parameter estimate ( 1|
ˆ

k k+θ ) using a first-order approximation 

of the Taylor series expansion of ( )1 1 1: 1, g
k k k+ + +h θ u , therefore, 

 
( )1 1: 1

1

1
ˆ

,
T

g
k k

k

k k

+ +
+

+

∂
=

∂
θ

h θ u
H

θ



 (9.20) 

 ( )1 1| 1 1| 1 1| 1: 1 1 1|
ˆ ˆ ˆˆ , g

k k k k k k k k k k k k k+ + + + + + + + += − = −d y H θ h θ u H θ  (9.21) 

The EKF does not take into account the linearization errors, i.e. *
1 0k+ =R . Table 

9.1 summarizes the EKF algorithm for the parameter estimation problem. In the 
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implementation of the EKF, the matrix ( )1 1: 1, g T
k k+ +∂ ∂h θ u θ , which is known as FE 

response sensitivities, can be computed accurately and efficiently using the DDM or the 

more computationally demanding finite difference method (FDM) (Tsay and Arora 1990, 

Zhang and Der Kiureghian 1993, Conte 2001). Details about the formulation of the 

parameter estimation problem for frame-type distributed-plasticity FE models using the 

EKF can be found in Ebrahimian et al. (2015). It is noted that in this chapter only the 

DDM is employed to compute the FE response sensitivities, because its efficiency 

compared to FDM was already shown by the authors (Ebrahimian et al. 2015). 

Table 9.1: Algorithm for nonlinear FE model updating using the EKF. 

 

9.4.2. Iterated Extended Kalman filter (IEKF) 

In the EKF ( )1 1 1: 1, g
k k k+ + +h θ u  is linearized around 1|

ˆ
k k+θ , the best available 

estimate of 1k+θ  before 1k+y  is taken into account. The IEKF linearizes ( )1 ,k+ ⋅ ⋅h  around 
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1| 1
ˆ

k k+ +θ , which is the corrected parameter estimate of 1k+θ  after 1k+y  is assimilated. This 

is achieved by an iterative procedure. First, the filter linearizes ( )1 ,k+ ⋅ ⋅h  around 0
1| 1

ˆ
k k+ +θ  

(where the superscript indicates the iteration number), usually assumed equals to 1|
ˆ

k k+θ , 

and computes the updated parameter and parameter covariance estimates, 1
1| 1

ˆ
k k+ +θ  and 

,1
1| 1

ˆ
k k+ +
θθP , respectively. Then, the filter linearizes ( )1 ,k+ ⋅ ⋅h  around 1

1| 1
ˆ

k k+ +θ  and computes a 

new updated parameter and parameter covariance estimates 2
1| 1

ˆ
k k+ +θ  and ,2

1| 1
ˆ

k k+ +
θθP , 

respectively. The iterative process finishes when the difference between two consecutive 

updated parameter estimates is less than a defined threshold (

1 0
1| 1 1| 1 1| 1

ˆ ˆ ˆi i
k k k k k k

−
+ + + + + +− ≤ εθ θ θ ) or after a maximum number of iterations ( iterN Niter) is 

reached. It is found that the majority of the improvement is achieved in the initial 

iterations (Simon 2006). Based on the described iterative procedure, quantities 1k+H  and 

1k+d  in Equation (9.19) can be expressed at iteration i  as 

 
( )1 1: 1

1

ˆ

,

1| 1

T

g
k ki

k
i
k k

+ +
+

∂
=

∂
+ +θ

h θ u
H

θ



 (9.22) 

 ( )1 1| 1 1 1| 1 1 1| 1 1: 1 1 1| 1
ˆ ˆ ˆˆ ,i i i i i g i

k k k k k k k k k k k k k=+ + + + + + + + + + + + += − −d y H θ h θ u H θ  (9.23) 

Like the EKF, the IEKF does not take into account the linearization errors, i.e., 

*
1 0k+ =R . 

Table 9.2 summarizes the IEKF algorithm for the parameter estimation problem. 

To compute the matrix of FE response sensitivities, ( )1 1: 1, g T
k k+ +∂ ∂h θ u θ , the DDM is 
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employed. In this chapter, the procedure proposed in Simon (2006) is used, with a 

maximum number of iterations 5iterN = , and the convergence threshold for the parameter 

estimate at 0.1%ε = . 

Table 9.2: Algorithm for nonlinear FE model updating using the IEKF. 

 

9.4.3. Unscented Kalman filter (UKF) 

The UKF evaluates the nonlinear measurement equation around the predicted 

parameter estimate 1|
ˆ

k k+θ  in a set of ( )2 1nθ +  regression points ( )
1|

i
k k+ϑ  ( 1, , 2 1i nθ= + ), 
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referred to as sigma points (SPs). The SPs are deterministically chosen such that their 

sample mean and covariance matrix are equal to the predicted parameter estimate ( 1|
ˆ

k k+θ ) 

and the predicted parameter covariance matrix estimate ( 1|
ˆ

k k+
θθP ), respectively. The SPs 

are propagated through the nonlinear measurement function yielding 

 ( ) ( )( )1 1: 11 1| ,i i g
k kk k k+ ++ += h uy ϑ  (9.24) 

The UKF uses a linearized measurement equation with 1 1, ,k k+ +H d  and 1
m
k+ρ  

obtained by statistical linear regression (Lefebvre et al. 2005) though the pairs

( ) ( )( )1| 1,i i
k k k+ +ϑ y , 1, , 2 1i nθ= + . This statistical linear regression is defined to minimize 

the difference ( ie ) between the nonlinear and linearized functions evaluated in the SPs in 

a least-squares sense: 

 ( ) ( )( )1 1|
i i

i k k k+ += −e H + dy ϑ  (9.25) 

 ( )
( ),

2 1

1 1
1

, arg min T
n

k k i i
i

θ+

+ +
=

= ∑
H d

H d e e  (9.26) 

The solution of Equation (9.26) is given by (Lefebvre et al. 2005): 

 ( ) ( ) 1

1 1| 1|
ˆ ˆT

k k k k k
−

+ + += θy θθH P P      ;     1 1| 1 1|
ˆˆk k k k k k+ + + += −d y H θ  (9.27) 

where 1|
ˆ

k k+ =θθP  predicted parameter covariance estimate computed as a weighted sample 

covariance of ( )
1|

i
k k+ϑ , 1|

ˆ
k k+ =θyP  predicted cross-covariance estimate computed as the 

weighted sample covariance of ( )
1|

i
k k+ϑ  and ( )

1
i
k+y , and 1|

ˆ
k k+ =θ  predicted parameter 
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estimate computed as a weighted sample mean of ( )
1|

i
k k+ϑ . The sample covariance of ie  

provides a measure of the magnitude of the linearization errors: 

 *
1 1| 1 1| 1

ˆ ˆ T
k k k k k k k+ + + + += −yy θθR P H P H  (9.28) 

in which 1|
ˆ

k k+ =yyP  predicted output covariance estimate computed as a weighted sample 

covariance of ( )
1

i
k+y , 1, , 2 1i nθ= + . Further details on the mathematical derivation of 

the UKF as the solution of a statistical linearization problem can be found in Lefebvre et 

al. 2005. Table 9.3 summarizes the UKF algorithm for the parameter estimation problem. 

In this chapter, the scaled unscented transformation (Wan and van der Merwe 2000) is 

used. Details about the formulation of the parameter estimation problem for frame-type 

distributed-plasticity FE models using the UKF can be found in Astroza et al. (2015a). 

Table 9.3: Algorithm for nonlinear FE model updating using the UKF. 
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9.4.4. Non-sequential updating procedure 

The computational burden of the FE model updating methodologies presented in 

Sections 9.4.1 to 9.4.3 is significant because the nonlinear FE model needs to be run from  

1t  to kt  ( 1, ,k N=   where N = number of data samples of the earthquake input 

excitation) when estimating the modeling parameters at time kt . Astroza et al. (2015b) 

proposed three different non-sequential approaches to reduce the computational 

requirements of the model updating method for the case of the UKF. Here, one of these 

approaches,  referred to as cumulative innovation, is also implemented for the EKF and 

IEKF. In this non-sequential updating approach the nonlinear FE model is updated at 

every 1D >  (D is called step update) time steps to reduce the computational demand. 

Nevertheless, all the output measurement from time step ( )2k D− +  to time step ( )1k +  

are included in the innovation when updating the model at time step ( )1k +  (Figure 9.2); 

therefore, no information contained in the measured data are discarded. More details 

about the non-sequential updating procedure can be found in Astroza et al. (2015b). 

 
Figure 9.2: Cumulative innovation approach for non-sequential model updating. 
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9.5. Application example: 3D RC frame building under seismic excitation 

A 3D 5-story 2-by-1 bay RC frame building subjected to bi-directional seismic 

excitation is considered to verify the performance of the proposed FE model updating 

methodology using the EKF, IEKF, and UKF and compare their performances. A 

mechanics-based nonlinear FE model of the building, developed in the open-source 

object-oriented software framework OpenSees, is used to simulate the response of the 

building. In the estimation phase, the simulated response data are contaminated by 

Gaussian noise and used as measured output ( y ). Then, the input excitation and the 

measured output are used to estimate the parameters characterizing the nonlinear material 

constitutive laws of concrete and reinforcing steel. In addition, the performance of the FE 

model updating procedure is also analyzed when the input ( gu ) is also polluted by noise. 

9.5.1. Nonlinear finite element model and input earthquake motions 

The structure is designed as an intermediate moment-resisting RC frame for a 

moderate/intermediate seismic risk zone (downtown Seattle, WA) with Site Class D soil 

conditions, a short-period spectral acceleration SMS = 1.37g, and a one-second spectral 

acceleration SM1 = 0.53g. The building has two bays in the longitudinal direction (X) and 

one bay in the transverse (Z) direction, with plan dimensions of 10.0×6.0 m, respectively. 

The frame has 5 stories with a floor-to-floor height of 4.0 m. Dead and live loads and the 

corresponding seismic masses are computed according to the 2006 International Building 

Code (ICC 2006). The building has six identical 0.45×0.45 m RC columns reinforced 

with 8 #8 longitudinal reinforcement bars and #3 bars spaced at 150 mm as transverse 

reinforcement. Grade 75 reinforcing steel is considered for the columns. Longitudinal 
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beams have a square cross-section of 0.40×0.40 m and are reinforced with 6 #8 

longitudinal reinforcement bars and #3 bars spaced at 100 mm as transverse 

reinforcement. Transverse beams have a rectangular cross-section of 0.40×0.45 m and are 

reinforced with 8 #8 longitudinal reinforcement bars and #3 bars spaced at 100 mm as 

transverse reinforcement. Grade 60 reinforcing steel is considered for the beams in both 

directions. Figure 9.3 shows the overall geometry of the building and the cross-sections 

of beams and columns.  

 
Figure 9.3: RC frame building: (a) Isometric view (black arrows represent the location of 
measured acceleration responses), (b) Cross-section of beams and columns. 

The computation of the FE response sensitivities, required by the EKF and IEKF, 

is accomplished using DDM. To have a direct and fair comparison of the filters' 
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performance, the same FE model is used to simulate the response of the building and to 

conduct the parameter estimation. The modified Giuffré-Menegotto-Pinto model 

(Filippou et al. 1983) is used to model the nonlinear uniaxial stress-strain behavior of the 

reinforcing steel. This material model is governed by eight parameters, five of which 

control the curvature of the hysteretic loops and three corresponding to primary physical 

parameters. The latter consist of the elastic modulus ( sE ), initial yield strength ( yf ), and 

strain hardening ratio ( b ) and will be considered as unknown parameters to be estimated 

in this study. The Popovics-Saenz model (Popovics 1973, Saenz 1964, Balan et al. 2001) 

is used to model the concrete. Five material parameters define the nonlinear uniaxial 

stress-strain relationship in this material model. These parameters are the modulus of 

elasticity ( cE ), peak compressive strength ( cf ), strain at peak compressive strength ( c ), 

crushing strength ( uf ), and strain at crushing strength ( u ). The values of cf , c , uf , and 

u  correspond to the confined state of concrete and are computed based on the initial 

(undamaged) properties of the concrete material. cf  and c  account for confinement 

effects of the transverse reinforcement according to Mander et al. 1988, whereas u  is 

computed as suggested by Scott et al. (1982). Figure 9.4 shows the uniaxial material 

models used for concrete and reinforcing steel fibers and their corresponding parameters. 

The set of modeling parameter values, referred to as true values hereafter, for concrete 

and reinforcing steel materials are: 200true
s colE GPa− = , 517true

y colf MPa− = , 0.01true
colb = , 

200true
s beamE GPa− = , 414true

y beamf MPa− = , 0.05true
beamb = , 27600true

cE MPa= , 

40true
cf MPa= , 0.0035true

cε = , 10true
uf MPa= , 0.01true

uε = . In Section 9.5.2 the 

sensitivities of these modeling parameters to a set of response quantities measured in the 
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building will be investigated and used to select the modeling parameters that will be 

included in the estimation process. 

 
Figure 9.4: Uniaxial material models used in the FE model: (a) Concrete, (b) Reinforcing 
steel. 

Figure 9.5 shows details of the FE model including mesh discretization, nodal 

masses, and gravity loads acting on beams. Displacement-based elements are used to 

model the beams and columns and Gauss-Lobatto quadrature is used for numerical 

integration along the elements. As displacement-based elements tend to localize 

deformations over a single element, referred to as plastic hinge (PH) element, the length 

of PH elements are selected to represent the physical plastic hinge zone of beams and 

columns, taken equal to 0.25 m for beams (≈ half of the height of the cross-section) and 

equal to 0.5 m for columns (≈ full height of the cross-section). Cross-sections of beams 

and column are discretized in longitudinal fibers as shown in Figure 9.5b. Linear shear 

and torsion force-deformation models are aggregated at the section level and along the 

element, uncoupled from the inelastic flexural-axial behavior. 
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The sources of energy dissipation beyond energy dissipated through hysteretic 

material behavior are modeled using mass and tangent stiffness-proportional Rayleigh 

damping (based on the tangent stiffness matrix at the last converged step of analysis). A 

critical damping ratio of 2% for the first and second natural periods (after application of 

the gravity loads) in the longitudinal direction of the building, T1 = 2.01 sec and T2 = 

0.64 sec, is considered. The resulting mass and stiffness proportional parameters used to 

describe the Rayleigh damping are 0 0948M .   and 0 0031K .  , respectively. The FE 

model described above and the true values of the parameters are used to simulate the 

response of the structure, referred as true response hereafter. 

 
Figure 9.5: Finite element model: (a) mesh discretization, nodal masses, and distributed 
loads on beams, (b) cross-section fiber discretization. 

Translation components of ground acceleration recorded at the Sylmar County 

Hospital during the 1994 Northridge earthquake are considered as input base excitation 

(Figure 9.6). Components 360° and 90° are applied in the longitudinal and transverse 

direction of the building, respectively. The acceleration ground motions were recorded at 
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a sampling rate of 50 Hz, filtered with a band-pass filter with cutoff frequencies of 0.1 

and 23.0 Hz, and have N = 550 data samples. The peak ground acceleration (PGA) was 

0.84g and 0.60g for components 360° and 90°, respectively. 

 
Figure 9.6: Base acceleration time history recorded at Sylmar County Hospital during 
the 1994 Northridge earthquake. 

9.5.2. Sensitivity analysis for parameter selection 

Before conducting the updating of the nonlinear FE model, the modeling 

parameters to be included in the estimation process (θ ) need to be chosen. Parameters 

with negligible uncertainty (i.e., modeling parameters which deterministic values are 

known in advance) and parameters which variation has negligible effects on the measured 

outputs (i.e., the measured outputs are practically insensitive with respect to these 

parameters) should be removed from the model updating scheme. An appropriate 

parameter selection step should ensure the identifiability of the modeling parameters 

(Cheung and Beck 2009, Wan and Ren 2014). 

In this section a simple first-order sensitivity analysis using the DDM is used to 

analyze the sensitivity of the measured responses with respect to the parameters of the  

constitutive laws used for steel and concrete (see Figure 9.4). It is noteworthy that the 
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analysis presented here corresponds to a local sensitivity approach. Unlike global 

sensitivity analysis, local sensitivity methods provide a local measure about the effect of 

a given parameter on a given measured response and are related to a fixed value in the 

space of modeling parameters. More details about local and global sensitivity analysis 

can be found in the literature  (e.g., Saltelli et al. 2004, Kucherenko et al. 2009, Wan and 

Ren 2014). 

A sparse instrumentation is assumed for the measured responses. Only two 

accelerometers, one for each translational direction, at the 3rd, 5th, and roof levels are 

considered (see Figure 9.3). In terms of modeling parameters, 3 primary material 

parameters define the constitutive law of each reinforcing steel ( sE , yf , and b ) and 5 

material parameters define the constitutive law of the concrete  ( cE , cf , c , uf , and u ). 

Since the grade of the reinforcing steel in beams and columns is different, the total 

number of modeling parameters is 2×3+5=11. The sensitivity of each of the six outputs 

with respect to each of the eleven material parameters is computed using DDM. Figure 

9.7 shows the time histories of the normalized roof transverse acceleration FE response 

sensitivities with respect to the eleven material parameters. It can be observed that the 

transverse roof acceleration ( 6ta ) is less sensitive to uf  and u  than to other material 

parameters. For example, the roof transverse acceleration response is less sensitive to uf  

than to beamb  by a factor of 5. Similar sensitivity results are obtained for all output 

response measurements, then all the measured responses are almost insensitive to uf  and 

u . Therefore, these material parameters, for which all the response sensitivities are 

lower than 1.0, are eliminated from the modeling parameter vector to be estimated. As a 



www.manaraa.com

365 
 

result, only nine modeling parameters are included in the estimation phase to update the 

nonlinear FE model: the three primary parameters of the reinforcing steel of columns (

, ,s col y col colE f b− − ), the three primary parameters of the reinforcing steel of beams (

, ,s beam y beam beamE f b− − ), and the three parameters of the concrete ( , ,c c cE f ε ). 

 
Figure 9.7: Time histories of the normalized sensitivity of the transverse acceleration at 
the roof with respect to the eleven modeling parameters. 

9.5.3. FE Model updating results 

Based on the analysis presented in Section 9.5.2, nine modeling parameters 

describing the concrete and reinforcing steel constitutive laws are considered as unknown 

and define the modeling parameter vector to be estimated, i.e., 
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9 1, , , , , , , , ×
− − − − = ∈  

T
s col y col col s beam y beam beam c c cE f b E f b E f εθ . The response of the structure is 

simulated using the true values of the parameters (see Section 9.5.1) and is referred to as 

the true response hereafter. After completion of the response simulation, the true relative 

accelerations at the 3rd, 5th, and roof levels in both translational directions are polluted by 

AWGN (representing output measurement noise, e.g., sensor and data acquisition system 

noises) defining the measured response data ( y ). The contaminated measured response 

data and the translational components of the input ground acceleration ( gu ) recorded at 

Sylmar station during the 1994 Northridge earthquake (Figure 9.6) are used to estimate 

the modeling parameter vector and to update the nonlinear FE model of the structure. It is 

noted that the same FE model of the structure used to simulate the response is considered 

in the parameter estimation phase, i.e., the effects of modeling uncertainty are neglected. 

In what follows, the effects of output measurement noise level (Section 9.5.3.1), input 

measurement noise level (Section 9.5.3.2), and the non-sequential updating approach 

previously proposed for the UKF by Astroza et al. (2015b) to alleviate the computational 

burden (Section 9.5.3.3) are studied. 

9.5.3.1. Effect of output measurement noise 

The robustness of the nonlinear FE model updating methodologies with respect to 

output measurement noise is investigated by considering two levels of AWGN polluting 

the output response measurements, namely 1.0%g RMS and 2.0%g RMS. The indicated 

RMS values result in covariance matrices ( )22 2
60.96 10−× m sI  and ( )22 2

63.85 10−× I m s , 

respectively, where = ×j j jI  identity matrix. Output noises of different measurements 
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are assumed statistically uncorrelated. Both levels of measurement noise are high 

compared to the level of noise expected in acceleration responses recorded in building 

structures during real earthquakes, however, they are used here to verify the performance 

of the estimation procedure under extreme output noise conditions. 

Because in practice only an estimate of the actual covariance matrix of the output 

measurement noise can be obtained, a zero-mean Gaussian process with a covariance 

matrix ( )22 2
1 60.47 10−
+ = = ×k m sR R I  is assumed for the output measurement noise in 

the estimation phase, i.e., a standard deviation of 0.7%g RMS. Zero-mean and covariance 

matrix =kQ Q  (i.e., time invariant) are assumed for the process noise kγ . The diagonal 

entries of Q  are assumed equal to 2
0|0

ˆ( )iq×θ , with 1, ,9= i  and 51 10−= ×q , i.e., it is 

constructed assuming a coefficient of variation (c.o.v.) of 51 10−×  of the initial estimate (

0|0θ̂ ). In all the analyses conducted the initial unknown modeling parameter vector is 

assumed equal to 

0|0
ˆ 0.7 ,1.3 ,1.25 ,1.3 ,0.8 ,0.75 ,1.2 ,0.85 ,0.9

Ttrue true true true true true true true true
s col y col col s beam y beam beam c c cE f b E f b E f− − − − = ε θ

. The initial estimate of the covariance matrix of the modeling parameters, 0|0P̂θθ , is 

assumed to be diagonal (i.e., statistically uncorrelated initial estimates of the modeling 

parameters) with terms computed as 2
0|0

ˆ( )ip×θ , with 1, ,9= i  and =p  c.o.v. of the 

initial estimate 0|0θ̂ . Values of 15%=p  and 5%=p  are studied. 

Table 9.4 summarizes the final estimate (i.e., estimated at the last time step, |
ˆ

N Nθ

) and the corresponding c.o.v. of the modeling parameters obtained using the UKF, EKF, 
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and IEKF for both levels of output measurement noise. It is noted that these estimates 

correspond to stable and converged values. Excellent estimation results are obtained with 

all filters for modeling parameters s colE − , y colf − , s beamE − , y beamf − , beamb , cE , and cf , 

with relative errors less or equal to 2%. The relative error between the final estimate of a 

parameter and its corresponding true value is computed as ( ) [ ]|
ˆ 100 %true true

N N − ×θ θ θ . 

Modeling parameters colb  and cε  are estimated with larger relative errors (≤ 7%), at the 

same time these parameters have associated larger estimates of the c.o.v. (about 1.5 – 

2.0%). Larger relative errors and c.o.v. in the final estimates of colb  and cε  stem from the 

small sensitivity of the measured responses to these parameters (see Section 9.5.2) and, 

therefore, less information about them is contained in y . As the output measurement 

noise level increases from 1% to 2% RMS, the accuracy of the modeling parameter 

estimates slightly deteriorate, mainly for the modeling parameters with less information 

in the measured output responses ( colb  and cε ). The final estimate of the c.o.v. (or 

covariance matrix |
ˆ

N NPθθ ) remains practically unchanged as the output measurement noise 

increases. In Table 9.4, the dash symbol (–) indicates the runs for which the nonlinear FE 

model experienced convergence problems due to the values of the modeling parameters 

estimates at some specific time step, and therefore no final estimate of the modeling 

parameters are reported for those cases since the estimation process did not finish. It is 

observed that in Case 1 (1% noise) the three filters provide very similar final estimates 

and c.o.v.s with both p = 5% and p = 15%, showing that for this application example and 
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initial modeling parameter vector ( 0|0θ̂ ), even small values in the diagonal of 0|0P̂θθ  allow 

the filters to drive the estimates to their true values. 

Table 9.4: Final estimate and coefficient of variation (in parenthesis) of the modeling 
parameters for different levels of output measurement noise. 

C
as

e Output 
Noise 
(%) 

Input 
noise 
(%) 

Step 
update 

(D) 
Filter 

Initial 
c.o.v. 

(p)  
(%) 

Modeling parameter 

s col
true
s col

E
E

−

−

 y col
true
y col

f
f

−

−

 col
true
col

b
b

 s beam
true
s beam

E
E

−

−

 y beam
true
y beam

f
f

−

−

 beam
true
beam

b
b

 c
true
c

E
E

 c
true

c

f
f

 c
true
c

ε
ε

 

1 1.0 0.0 1 

UKF 
15 1.00 

(0.09) 
1.00 

(0.06) 
1.01 

(1.47) 
1.00 

(0.13) 
1.00 

(0.08) 
0.99 

(0.32) 
1.00 

(0.21) 
1.01 

(0.87) 
0.98 

(1.88) 

5 1.00 
(0.08) 

1.00 
(0.06) 

1.06 
(1.26) 

1.00 
(0.13) 

1.00 
(0.07) 

1.00 
(0.29) 

1.01 
(0.19) 

1.00 
(0.63) 

0.94 
(1.34) 

EKF 
15 1.00 

(0.11) 
1.00 

(0.07) 
1.04 

(1.58) 
1.00 

(0.15) 
1.00 

(0.09) 
0.99 

(0.31) 
1.00 

(0.33) 
1.00 

(0.95) 
0.99 

(2.11) 

5 1.00 
(0.11) 

1.00 
(0.07) 

1.04 
(1.51) 

1.00 
(0.15) 

1.00 
(0.10) 

1.00 
(0.31) 

1.01 
(0.35) 

1.00 
(0.83) 

0.95 
(1.73) 

IEKF 
15 1.00 

(0.11) 
1.00 

(0.07) 
1.04 

(1.51) 
1.00 

(0.15) 
1.00 

(0.10) 
1.00 

(0.31) 
1.01 

(0.35) 
1.00 

(0.82) 
0.95 

(1.71) 

5 1.00 
(0.11) 

1.00 
(0.07) 

1.06 
(1.49) 

1.01 
(0.15) 

1.00 
(0.09) 

0.99 
(0.31) 

0.99 
(0.32) 

0.98 
(0.84) 

0.98 
(1.76) 

2 2.0 0.0 1 

UKF 
15 1.00 

(0.09) 
0.99 

(0.06) 
1.08 

(1.40) 
0.99 

(0.13) 
1.00 

(0.08) 
0.99 

(0.31) 
1.02 

(0.21) 
1.02 

(0.80) 
0.93 

(1.71) 

5 1.00 
(0.08) 

1.00 
(0.06) 

1.07 
(1.32) 

0.99 
(0.13) 

1.00 
(0.08) 

1.00 
(0.29) 

1.01 
(0.20) 

1.01 
(0.73) 

0.92 
(1.47) 

EKF 
15 – – – – – – – – – 

5 1.00 
(0.11) 

1.00 
(0.07) 

1.07 
(1.50) 

1.00 
(0.15) 

1.00 
(0.09) 

0.99 
(0.31) 

1.01 
(0.33) 

1.01 
(0.88) 

0.96 
(1.76) 

IEKF 
15 – – – – – – – – – 

5 1.00 
(0.11) 

1.00 
(0.07) 

1.07 
(1.48) 

1.00 
(0.15) 

1.00 
(0.09) 

0.99 
(0.31) 

1.01 
(0.33) 

1.00 
(0.84) 

0.94 
(1.67) 

It is observed that in Case 2 with 15%p = , and in many other cases with 

15%p =  discussed later, the EKF and IEKF do not provide estimates of the modeling 

parameters due to convergence problems of the nonlinear FE model during the updating 

procedure. It is noted that larger p implies that the filter relies more on the measured 

response data and less in the initial estimate of the modeling parameters and therefore a 

faster convergence rate in the estimation can be obtained if 0|0
ˆ θθP  is larger, however, this 

may negatively affect the stability (e.g., Hoshiya and Saito 1984). Since the EKF and 

IEKF are based on the analytical linearization of the nonlinear state-space model (see 
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Sections 9.4.1 and 9.4.2), it is expected that large initial values in 0|0
ˆ θθP  will induce large 

and abrupt changes in the modeling parameters when the measured data become sensitive 

to them, which in turn can produce convergence issues in the mechanics-based nonlinear 

FE model. In the case of the UKF, large and abrupt changes in the estimates of the 

modeling parameters are prevented by avoiding the analytical linearization of the 

nonlinear state-space model. Moreover, in the particular case of the scaled unscented 

transformation (UT), the convergence rate can also be controlled by a parameter defining 

the spread of the SPs around the mean value, which in this study is set equal to 0.01 as 

recommended by Wan and der Merwe (2000). These remarks can be observed in Figure 

9.8, where the time histories of the a posteriori normalized estimates (normalized by their 

corresponding true values) of three modeling parameters, ( colb , beamb , and cE ) obtained 

with the UKF and EKF for Case 1 and both values of p (5 and 15%) are shown. In this 

figure, the area between the envelopes mean ± standard deviation (µ ±σ ) for 15%p =  is 

shaded in grey. From Figure 9.8a, it is noted that the UKF converges smoothly to the true 

values of the modeling parameters and that the convergence is faster and with more 

oscillations in the case of 15%p = . In addition, the uncertainty (measured by σ  or 

c.o.v.) in the estimates decreases asymptotically to zero as more output data sensitive to 

the corresponding parameters are assimilated. From Figure 9.8b, it is noted that the EKF 

produces abrupt changes in the estimate of a modeling parameter as soon as output data 

contain information about that parameter, especially when 15%p = . This effect is clearly 

observed for cE  and beamb , in which large and abrupt jumps in the estimates are observed 

at the beginning of the excitation ( 1.0sect < ) and at around 2.5sect = , respectively. As 
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pointed out before, these abrupt and large jumps in the estimates of the modeling 

parameters can lead to problems of convergence of the nonlinear FE model. It is noted 

that a large initial covariance matrix 0|0P̂θθ  (large p) is required when the initial estimate 

0|0θ̂  is far from the true value of the modeling parameter vector. In the case of 

mechanics-based nonlinear FE models, many parameters to be estimated are physical 

quantities and therefore a fairly good initial estimate might be guessed based on 

engineering experience and material testing. However, larger errors in the initial 

estimates are expected for empirical parameters or in the case that actual construction in 

the field does not follow the values specified in the as-built drawings/specifications of the 

structure. 

 
Figure 9.8: Time histories of the a posteriori estimates of the modeling parameter for 
Case 1 (noiseless input, 1.0%g RMS output measurement noise, and step update=1) and 
both initial coefficients of variation (5 and 15%). (a) UKF, (b) EKF. 

Figure 9.9 shows the time histories of the a posteriori normalized estimates of the 

nine modeling parameters for Case 1 (noiseless input, 1.0%g RMS output measurement 
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noise, and step update = 1) and 5%p = . The estimates of the three filters converge to the 

true values for those parameters that the output measured response are very sensitive to (

s colE − , y colf − , s beamE − , y beamf − , beamb , cE , and cf ). In the case of colb  and cε , the time 

histories of the estimates approach to the true values but the estimates do not stabilize and 

fluctuate until the end of the time history, because there is no enough information about 

them in the output measured response. Astroza et al. (2015b) demonstrate that the use of 

heterogeneous sensor arrays, in addition to displacement and/or strain output 

measurements, improve the identifiability of those parameters that acceleration responses 

might be not very sensitive to, such as post-yield parameters of reinforcing steel (b ) and 

compressive strength parameters of concrete ( cf  and cε ).  

Stiffness related parameters ( s colE − , s beamE −  and cE ) start updating from the first 

time steps, because output measured response during low amplitude excitation contain 

information about them. In particular, FE response sensitivities of y  with respect to cE  

during the first time steps are much higher than those of other modeling parameters. 

Consequently, as discussed above, the EKF and IEFK induce large and abrupt jumps in 

the estimate of cE  at the beginning of the excitation. Stiffness related parameters 

converge to their true values at around 4 sec. When the input excitation increases and the 

structure undergo nonlinear behavior, the yield ( yf ) and post-yield (b ) parameters of 

steel and compressive strength parameters of concrete ( cf  and cε ) start to update at about 

2.5sect = . Because the design of the frame satisfies the strong column–weak beam 

requirement, the nonlinear response in beams is larger than in columns, and therefore 
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beamb  is estimated more accurately than colb , since post-yield parameters of the reinforcing 

steel material model require that the strain ductility demand of enough steel fibers 

increase sufficiently. In general, the UKF and EKF have a similar convergence rate, 

faster and more stable than that of the IEKF. 

 
Figure 9.9: Time histories of the a posteriori estimates of the modeling parameter for 
Case 1 (noiseless input, 1.0%g RMS output measurement noise, and step update=1) and 
initial c.o.v.=5%. 

Table 9.5 summarizes the relative RMS error (RRMSE) between the true 

responses and their counterparts obtained using the final estimate of the modeling 

parameters ( |
ˆ

N Nθ ). Recall that the RRMSE between two signals 1s  (reference) and 2s  is 

computed as [ ] ( ) ( )2 21 2 1
1 1% 1 1 100Nt Nt

i ii i iRRMSE Nt s s Nt s= =
   = − ×∑ ∑      

, where Nt  

is the total number of data samples in the signals. Here, output response ija  corresponds 
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to the relative acceleration time history at story i  in direction j , where l  and t  stand for 

longitudinal and transverse directions, respectively. The RRMSEs between the true and  

corresponding simulated responses using the initial estimate of the modeling parameter (

0|0θ̂ ) are equal to 58.89, 38.33, 37.86, 39.62, 45.48, and 40.64 for 3la , 5la , 6la , 3ta , 5ta , 

and 6ta , respectively. Based on the results exhibited in Table 9.5, the successful updating 

of the nonlinear FE model is clearly observed. The discrepancies between the true 

measured and simulated responses of the updated FE model are almost negligible, with 

most of the RRMSEs lower than 1.0%. The lowest RRMSEs for a given value of p are 

obtained with the UKF, however the differences between the three different filters are 

insignificant. The low RRMSEs also confirm that the measured acceleration responses do 

not contain enough information about modeling parameters colb  and cε , and therefore 

they cannot be accurately estimated (see Table 9.4). 

Table 9.5: RRMSE between true and estimated output response measurements for 
different levels of output measurement noise. 

Case 
Output 
Noise 
(%) 

Input 
noise 
(%) 

Step 
updat
e(D) 

Filter 

Initial 
c.o.v. 

(p) 
(%) 

Output response measurement ( y ) 

3la  5la  6la  3ta  5ta  6ta  

1 1.0 0.0 1 

UKF 15 0.41 0.28 0.23 0.24 0.24 0.25 
5 0.34 0.27 0.28 0.40 0.35 0.37 

EKF 15 0.56 0.28 0.22 0.33 0.25 0.30 
5 0.47 0.29 0.27 0.45 0.40 0.47 

IEKF 15 0.47 0.30 0.29 0.49 0.45 0.51 
5 0.58 0.32 0.30 0.53 0.42 0.50 

2 2.0 0.0 1 

UKF 15 1.05 0.67 0.58 0.73 0.71 0.83 
5 0.65 0.56 0.50 0.70 0.69 0.67 

EKF 15 – – – – – – 
5 0.72 0.52 0.37 0.48 0.45 0.48 

IEKF 15 – – – – – – 
5 0.63 0.46 0.36 0.52 0.49 0.51 
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Several unobserved global and local response quantities of the building obtained 

using the true modeling parameters (i.e., true responses) and the final estimate of the 

modeling parameters ( |
ˆ

N Nθ ) are compared in Figure 9.10. Base shear in longitudinal and 

transverse directions ( x
bV  and z

bV , respectively) normalized by the total weight of the 

building (W ) versus the roof drift ratio in the corresponding direction ( xRDR  and zRDR

) are plotted in Figure 9.10a−b, respectively. Moment ( M ) versus curvature ( κ ) for 

sections at the base of a column (section 1−1 in Figure 9.3a) and at the end of a 2nd floor 

longitudinal beam (section 2−2 in Figure 9.3a) are shown in Figure 9.10c−d, respectively. 

Fiber level response are presented in Figure 9.10e−f, where the stress (σ ) versus strain (

ε ) of a monitored reinforcing steel fiber at the bottom of a column (section 1−1 in Figure 

9.3a) and a monitored concrete fiber at the end of a 2nd floor transverse beam (section 

4−4 in Figure 9.3a) are plotted. The excellent agreement between the true and estimated 

response based on |
ˆ

N Nθ  corroborates that the updated FE models obtained using UKF, 

EKF, and IEKF can be reliably used for damage identification purposes. 



www.manaraa.com

376 
 

 
Figure 9.10: Comparison of true unobserved responses and estimated unobserved 
responses based on the final estimate of modeling parameters for Case 1 (noiseless input, 
1.0%g RMS output measurement noise, and D = 1) and p = 5%. (a) normalized base 
shear versus roof drift ratio in the longitudinal direction, (b) normalized base shear versus 
roof drift ratio in the transverse direction, (c) moment versus curvature at the base of a 
column (section 1−1 in Figure 9.3a), (d) moment versus curvature at the end of 
longitudinal beam (section 2−2 in Figure 9.3a), (e) stress versus strain of a reinforcing 
steel fiber at the bottom of a column (section 1−1 in Figure 9.3a), (f) stress versus strain 
of a concrete fiber at the end of a transverse beam (section 4−4 in Figure 9.3a). 

9.5.3.2. Effect of input measurement noise 

The parameter estimation framework presented in Section 9.4 does not explicitly 

account for input measurement noise; therefore the potential detrimental effects of this 

assumption are studied in this section. Two cases of AWG input measurement noise level 

are considered: 0.5% and 1.0%g RMS. An output measurement noise of 1.0%g RMS is 

assumed, therefore Case 1 presented in Section 9.5.3.1 corresponds to the noiseless input 

measurement situation. Table 9.6 summarizes the final estimate (i.e., estimated at the last 
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time step, |
ˆ

N Nθ ) and the corresponding c.o.v. of the modeling parameters obtained using 

the UKF, EKF, and IEKF for both levels of input measurement noise. Figure 9.11 shows 

the relative error between the true values of the modeling parameters and the final 

estimates obtained using the UKF, EKF, and IEKF for both values of p. Figure 9.12 

shows the time histories of the a posteriori estimates of the modeling parameters for Case 

3 (see Table 9.6) and initial c.o.v.=5%. Similarly to the results discussed in Section 

9.5.3.1, convergence problems of the nonlinear FE model are faced during the updating 

process when using the EKF and IEKF and 15%p = , and therefore these cases do not 

provide estimates of the modeling parameters. For the three filters, as the level of input 

measurement noise increases the relative error for those parameters for which the output 

measured responses are less sensitive to, i.e., cε , colb , and cf , increases considerably, 

especially for cε  with 1.0%g RMS input noise. For the remaining parameters ( s colE − ,

y colf − , s beamE − , y beamf − , beamb , and cE ), the output measured response contain 

considerable information and consequently the relative error is lower than 4% regardless 

the level of input measurement noise. This observation confirms the robustness of the 

parameter estimation framework (with all filters) to input measurement noise, in spite 

that it is not considered in the formulation. 
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Table 9.6: Final estimate and coefficient of variation (in parenthesis) of the modeling 
parameters for different levels of input measurement noise. 

C
as

e Output 
Noise 
(%) 

Input 
noise 
(%) 

Step 
update 

(D) 
Filter 

Initial 
c.o.v. 
(p)(%) 

Modeling parameter 
s col
true
s col

E
E

−

−

 y col
true
y col

f
f

−

−

 col
true
col

b
b

 s beam
true
s beam

E
E

−

−

 y beam
true
y beam

f
f

−

−

 beam
true
beam

b
b

 c
true
c

E
E

 c
true

c

f
f

 c
true
c
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Figure 9.11: Relative errors between true modeling parameter values (reference) and the 
corresponding final estimates for different levels of input measurement noise. 
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Figure 9.12: Time histories of the a posteriori estimates of the modeling parameter for 
Case 3 (0.5%g RMS input measurement noise, 1.0%g RMS output measurement noise, 
and step update=1) and initial c.o.v.=5%. 

Figure 9.13 summarizes the RRMSEs between the true measured responses and 

their counterparts obtained using the final estimate of the modeling parameters and the 

noiseless input excitation for different levels of input measurement noise. The RRMSE 

slightly increases as the level of AWGN in the input excitation increases. Similar errors 

are obtained with all three filters. In all cases the RRMSE is lower than 1.5%, which 

demonstrates the excellent robustness to input measurement noise of the FE model 

updating methodology when the UKF, EKF, or IEKF are used as parameter estimation 

tool. Recall that the levels of input and output measurement noises used in this chapter 

are significantly higher than those expected in real-world earthquake engineering 

applications; nonetheless, they are considered to investigate the performance and 

robustness of the estimation framework under adverse conditions. 
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Figure 9.13: Relative RMS errors between true responses and their counterparts obtained 
using the final estimate of the modeling parameters and the noiseless input for different 
levels of input measurement noise. 

To analyze if the deterioration in the estimates of the modeling parameters for 

which the output measured responses are less sensitive to (see Figure 9.11), the same 

unobserved global and local response quantities analyzed in Section 9.5.3.1, are plotted in 

Figure 9.14. The agreement between true responses and those estimated from the final 

estimate of the modeling parameters is excellent. This confirms that the updated FE 

model can be reliable used to identify and quantify the damage in the structure at 

different resolution levels, from global system to local member and sub-component levels 

(e.g., yielding in reinforcing steel and crushing of concrete), even in the presence of high 

levels of input measurement noise. 
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Figure 9.14: Comparison of true unobserved responses and estimated unobserved 
responses from the final estimate of modeling parameters for the case with 0.5%g RMS 
input measurement noise, 1.0%g RMS output measurement noise, D = 1, and p = 5%. (a) 
normalized base shear versus roof drift ratio in the longitudinal direction, (b) normalized 
base shear versus roof drift ratio in the transverse direction, (c) moment versus curvature 
at the base of a column (section 1−1 in Figure 9.3a), (d) moment versus curvature at the 
end of longitudinal beam (section 2−2 in Figure 9.3a), (e) stress versus strain of a 
reinforcing steel fiber at the bottom of a column (section 1−1 in Figure 9.3a), (f) stress 
versus strain of a concrete fiber at the end of a transverse beam (section 4−4 in Figure 
9.3a). 

9.5.3.3. Effect of non-sequential updating 

In this section the non-sequential updating procedure (see Section 9.4.4) 

previously proposed by Astroza et al. (2015b), which was originally developed for the 

UKF, is also implemented for the EKF and IEKF. The performance of the parameter 

estimation framework using non-sequential updating and the three filters is investigated 

in terms of convergence, accuracy, and robustness for the three filters. Three updating 
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steps, in addition to the reference case in which the FE model is updated at every time 

step, are studied:  D = 5, 10, 20. Here, the results for noiseless input excitation are 

summarized; however, consistent results are also obtained when 0.5%g RMS input 

measurement noise is considered. 

Figure 9.15 shows the relative error between the true values and the final estimate 

of the unknown modeling parameters obtained using the different filters and for both 

values of p. Similarly to the results shown in Section 9.5.3.1 and 9.5.3.2, the EKF and 

IEKF experienced problems associated to convergence of the nonlinear FE model when 

D = 5 and p = 15%, however this is not the case with 10D =  and 20D = . This is 

because in the non-sequential procedure when the FE model is updated at time step 

( )1k + , the innovation vector includes the output measured responses from time steps 

( )1k D− +  to ( )1k +  (last D time steps). Therefore, the new estimate of the modeling 

parameters minimize the discrepancies between the measured and estimated response for 

those D time steps, which avoids large and abrupt changes in the estimates of the 

modeling parameters when D is large. However, it is noted that D cannot be increased 

indefinitely as to avoid the loss of information extracted from the response data. 

The relative error in the estimates of the modeling parameters obtained by the 

UKF, EKF, and IEKF slightly increases as D increases. The UKF and EKF have similar 

performance in terms of accuracy in the estimation of the parameters, except for colb , cf , 

and cε  when p=15%. The IEKF outperforms the UKF and EKF because of its iterative 

scheme, which allows to further minimize the estimation error at every updating step and 

therefore to extract more information from the data. The relative errors obtained by all 
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filters for parameters s colE − , y colf − , s beamE − , y beamf − , beamb , and cE  are lower than 3% 

for the different values of D analyzed (i.e., 1, 5, 10, and 20), while relative errors for cε , 

colb , and cf  reach a peak of about 10% when using the UKF and EKF with 20D = . This 

confirms that the proposed non-sequential model updating method has a very good 

performance, even for large values of D, and that the estimation accuracy only 

downgrades for those parameters for which the output measured responses are not very 

sensitive to. 

 
Figure 9.15: Relative errors between true modeling parameter values (reference) and the 
corresponding final estimates for noiseless input and different update step (D) values. 

Figure 9.16 shows the RRMSEs between the true measured responses and their 

counterparts obtained using the final estimate of the modeling parameters for different 
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values of parameter D. The lowest RRMSE values are obtained when using the IEKF, 

which is in agreement with the results obtained for the estimation of the modeling 

parameters (Figure 9.15), due to the iterative procedure in the IEKF. In the case of the 

IEKF, the RRMSEs do not vary as D increases, confirming that the iterative procedure 

extracts most of the information contained in the response data even for large values of 

D. Finally, the RRMSEs for all the filters are lower than 1.5%, which demonstrates the 

excellent agreement between the true and estimated output measured responses. 

 
Figure 9.16: Relative RMS errors between true responses and their counterparts obtained 
using the final estimate of the modeling parameters for noiseless input and different 
update step (D) values. 
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9.5.3.4. Computational requirements 

The proposed framework aims to be implemented in advanced mechanics-based 

nonlinear FE models of large and complex civil structures. The application example used 

in this chapter represents a first step in this direction by considering a 3D RC frame 

building modeled with displacement-based nonlinear fiber-section beam-column 

elements and using state-of-the-art uniaxial material constitutive models. In spite the 

increasing low-cost computational power available nowadays, integration of high-fidelity 

mechanics-based nonlinear FE structural modeling and stochastic filtering techniques 

(e.g., UKF, EKF, and IEKF) still demands a significant amount of computational 

resources. Consequently, it is of great importance to investigate the computational cost of 

the FE model updating framework, compare the resources required by the different 

filters, and examine the savings introduced by the non-sequential updating procedure. All 

the results presented in this section are obtained from analyses performed using a desktop 

workstation with an Intel Xeon 2.66 GHz processor and 48 GB random-access memory. 

It is noteworthy that the UKF can make use of parallel computing, because at each 

updating time step the nonlinear FE models corresponding to different SPs can be run at 

the same time. 

Figure 9.17 compares the computation time (total process time) required by the 

different filters in the estimation of the modeling parameters in the case of 1.0%g RMS 

output measurement noise, 0.5%g RMS input measurement noise, and 5%p = . In the 

case of the UKF, ten processing units (cores) are used to conduct the estimation process. 

When the nonlinear FE model is updated at every time step, the computational cost 
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associated to the EKF and IEKF are the lowest and highest, with process time of 92 and 

138 hours, respectively, while the process time of the UKF is 106 hours. When the non-

sequential estimation procedure is implemented, the computational cost is significantly 

reduced. The process time decreases by approximately 75, 90, and 95% for cases D = 5, 

10, 20 relative to the case D = 1. In the case of non-sequential updating cases (D = 5, 10, 

20), for a fixed D, the IEKF is the most expensive estimation tool because of his iterative 

procedure, and the EKF and UKF have very similar computational costs, with a relative 

difference lower than 10%. It is noted that in the case of the UKF, the use of ten cores 

alleviate considerable the computational burden of this estimation technique. 

 
Figure 9.17: Computational cost of the FE model updating procedure when using 
different filters. Results for Case of 1.0%g RMS output measurement noise, 0.5%g RMS 
input measurement noise, and p = 5%. 

9.6. Conclusions 

This chapter investigated and compared the performance of a methodology to 

update mechanics-based nonlinear structural finite element (FE) models when different 

variants of the Kalman filter for nonlinear state-space models are used as estimation 

tools. The Unscented Kalman filter (UKF), Extended Kalman filter (EKF), and iterated 

Extended Kalman filter (IEKF) were applied to estimate unknown modeling parameters 
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of the nonlinear FE model and their performance in terms of convergence, accuracy, 

robustness, and computational requirements is examined. It is noted that the updated FE 

model provides a comprehensive description of damage in the structure, and therefore 

can be use for damage identification and structural health monitoring purposes. 

Numerically simulated data of a three-dimensional 5-story 2-by-1 bay reinforced 

concrete frame building subjected to bi-directional earthquake excitation was used as a 

verification example. The FE response sensitivities with respect to eleven modeling 

parameter describing the nonlinear constitutive law of the materials (reinforcing steel and 

concrete) were first analyzed. Based on the obtained results, only nine parameters were 

found to significantly influence the output measured response, and therefore they were 

chosen as unknown parameters to be estimated. Excellent estimation results of these 

modeling parameters were obtained using the UKF, EKF, and IEKF. Because of the 

analytical linearization used in the EKF and IEKF, abrupt and large jumps in the estimate 

of the modeling parameters were observed when using these filters, which may lead to 

problems of convergence of the nonlinear FE model. The UKF slightly outperforms the 

EKF and IEKF and prevents large and abrupt changes in the estimates of the modeling 

parameters because it does not use analytical linearization of the nonlinear FE model, but 

it has a higher computational cost. 

A non-sequential estimation procedure, which makes use of all the recorded data, 

previously proposed by the authors for the UKF is also implemented for the EKF and 

IEKF. The capabilities of the non-sequential scheme to reduce the computational cost, 

keeping accurate and robust estimation results, are proven. The non-sequential procedure 

alleviates the problems related to abrupt and large jumps in the estimate of the modeling 
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parameters when using the EKF and IEKF. Because of its iterative nature, the IEKF 

outperforms the UKF and EKF when the non-sequential updating procedure is used, but 

at a higher computational cost. 
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CHAPTER 10 

BAYESIAN NONLINEAR STRUCTURAL FE MODEL 

UPDATING FOR DAMAGE IDENTIFICATION OF CIVIL 

STRUCTURES SUBJECTED TO UNKNOWN INPUTS: 

INPUT AND NONLINEAR SYSTEM IDENTIFICATION 

10.1. Introduction 

 Rapid condition assessment of structures plays a key role in supporting the 

decision-making process following extreme events. These major events, such as 

earthquakes, can potentially induce critical damage to civil structures, and consequently 

decisions related to emergency response, inspection, evacuation, and retrofit of structures 

are of vital importance. Damage initiation and progression cannot always be detected 

through visual screening and thus sometimes time-consuming, costly, and invasive post-

event inspection and evaluation methods are required to detect certain damage. Potential 

impacts of earthquakes as well as other natural and man-made hazards on communities 

can be reduced through accurate and timely risk mitigation decisions after catastrophic 

events, which can be supported and facilitated by the use of structural health monitoring 
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(SHM), diagnosis, and prognosis to help assess the damage in and residual strength of 

civil structures. 

Several approaches for SHM, and in particular for system identification (SID) and 

damage identification (DID) of civil structures, have been proposed and studied in the 

literature for rapid post-earthquake assessment of structural safety. Most existing 

methods in DID use measured low-amplitude input-output or output-only dynamic data 

recorded from the structure of interest before and after a potentially damaging event to 

update a linear-elastic viscously-damped structural model (e.g., Mottershead and Friswell 

1993, Ren and De Roeck 2002, Teughels and De Roeck 2004, Simoen et al. 2013). These 

methods then identify damage as a loss of effective stiffness in one or more regions of the 

structure. Methods using the vibration data recorded solely during the damage inducing 

event have also been investigated (e.g., Distefano and Pena-Pardo 1976, Ching et al. 

2006, Huang et al. 2010, Liu and Au 2013, Omrani et al. 2013). However, these studies 

have been based on highly idealized structural models with simplified hysteretic rules, 

which are not suitable to predict the response of large and complex civil structures and, 

consequently, are not employed in state-of-the-art mechanics-based structural models, 

which are increasingly used for analysis and design of structures. 

The structural response during damage-inducing events is far from being linear 

elastic. Therefore, it is crucial to develop reliable, robust, and accurate DID methods able 

to capture the complex nonlinear behavior exhibited by structural systems when they are 

subjected to strong excitations. Incorporating high-fidelity mechanics-based nonlinear 

finite element (FE) models in advanced SHM techniques enables reconstruction of the 

nonlinear response process experienced by the structure during the damage-inducing 
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loading, which in turn provides invaluable information about the location, type, and 

extent of damage in the structural system. For this purpose, Astroza et al. (2014) and 

Ebrahimian et al. (2015) used the unscented Kalman filter (UKF) and the extended 

Kalman filter (EKF), respectively, to estimate time-invariant parameters describing the 

nonlinear material constitutive models of mechanics-based nonlinear FE models of 

frame-type structures given input-output dynamic data recorded during damage-inducing 

earthquake events. 

In many practical applications, the actual input excitations acting on the structure 

of interest are difficult to be accurately and precisely measured (e.g., due to soil-

structure-interaction effects) or the input excitations may be only partially measured (e.g., 

extended civil structures such as long-span bridges with sensors at some supports only). 

Such erroneous and/or incomplete input components, if not treated correctly, will 

introduce some errors in the estimation of the modeling parameters involved in the model 

updating procedure. This chapter proposes a Bayesian nonlinear FE model updating 

methodology for damage identification of civil structures when the inputs are unknown, 

i.e. only limited output measurements are available. The proposed methodology allows 

estimating unknown time-invariant modeling parameters of the mechanics-based 

nonlinear FE model of the structure and the unknown input excitation simultaneously 

using spatially sparse structural output response measurements recorded during a 

damage-inducing earthquake event. Although previous studies have proposed methods 

for SID of structures with unknown inputs, for both linear (e.g., Kitanidis 1987, Wang 

and Haldar 1997, Chen and Li 2004, Hsieh 2011, Zhang et al. 2011, Lourens et al. 2012, 

Sun and Betti 2013, Eftekhar Azam et al. 2015, Al-Hussein and  Haldar 2015a,b) and 
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nonlinear (e.g., Yang et al. 2006, Yang and Huang 2007, Huang et al. 2010, Radhika and 

Manohar 2013) models, this chapter represents the first effort to identify the structural 

system and the unknown inputs when high-fidelity mechanics-based nonlinear FE models 

are used for DID purposes. The use of state-of-the-art nonlinear FE models for DID 

represents an important progress in the field of SHM, because a comprehensive damage 

diagnosis at different resolution levels, from global to local levels, can be achieved from 

the updated FE model. 

10.2. Nonlinear FE model updating with unknown input 

The discrete-time equation of motion of a nonlinear FE model of a structure at 

time ( )1 1kt k t+ = + ∆ , in which 0,1,...k =  and t∆ = time step, can be formulated as 

 ( ) ( ) ( ) ( ) ( )( )1 1 1 1 1 1,k k k k k k+ + + + + ++ + = +M θ q θ C θ q θ r q θ θ f g   (10.1) 

where 1n ×∈ =θ 

θ  vector of unknown time-invariant modeling parameters, 

1, , n×∈ =q q q    nodal displacement, velocity, and acceleration vectors, n n×∈ =M   

mass matrix, n n×∈ =C   damping matrix, ( )( ) 1, n×∈ =r q θ θ   history-dependent 

internal resisting force vector, 
1n×∈ =f   known dynamic excitation vector, 1n×∈ =g   

unknown dynamic excitation vector, and the subscript indicates the time step. In the case 

of rigid base earthquake excitation the dynamic load vectors take the form 

1 1k k+ += −f M Lu  and *
1 1k k+ += −g M L s ,  where un n×∈ =L   influence matrix of the 

known excitation, 1
1

un
k

×
+ ∈ =u   known input ground accelerations with un =  number of 

known base excitation components, * =sn n×∈L   influence matrix of the unknown 
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excitation, and 1
1

sn
k

×
+ ∈ =s    unknown input ground accelerations with sn =  number of 

unknown base excitation components. 

In general, different structural responses (output) can be recorded using a 

heterogeneous sensor array (e.g., accelerometers, strain gauges, GPS) and can be 

expressed analytically as 

 ( )1 1 1 1 1 1 1 1, , , ,k k k k k k k k+ + + + + + + += +y l q q q u s v    (10.2) 

where 1
1

yn
k

×
+ ∈ =y   vector of recorded structural output response quantities (output 

response measurements), 1k+ =l nonlinear response function, and 1
1

yn
k

×
+ ∈ =v   output 

measurement noise vector assumed to be white Gaussian with zero-mean and covariance 

matrix 1
y yn n

k
×

+ ∈R  , i.e., ( )1 1,k k+ +v 0 R N . Moreover, the measured output responses 

can be estimated by the FE model of the structure, and their relationship can be written as 

 1 1 1ˆk k k+ + += +y y v  (10.3) 

where 1
1ˆ yn

k
×

+ ∈ =y  predicted structural output response quantities from the FE model 

(predicted output response measurements).  Equation (10.3) presumes that a nonlinear FE 

model can predict with reasonable accuracy the response of the structure of interest. 

Based on extensive investigations carried out in the field of nonlinear modeling and 

response simulation of structures, adequate mechanics-based nonlinear FE models with 

well calibrated modeling parameters are able to properly predict the actual response of 

civil structures (e.g., Uriz et al. 2008, Martinelli and Filippou 2009, Ebrahimian et al. 

2014). 
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From Equations (10.1–10.3), the vector of recorded output response quantities 

from time 1t  to 1kt + ,  ( )1 1
1: 1 1 2 1, , , yT n kT T T

k k
 + × 

+ + = ∈ y y y y  ,  can be expressed as a 

nonlinear function of the modeling parameters (θ ), known multi-dimensional input 

ground acceleration time histories from time 1t  to 1kt +  (

( )1 1
1: 1 1 2 1, ,..., u

T n kT T T
k k

+ ×  
+ + = ∈ u u u u   

 ), unknown multi-dimensional input ground 

acceleration time histories from time 1t  to 1kt +  ( ( )1 1
1: 1 1 2 1, , ... , s

T n kT T T
k k

+ ×  
+ + = ∈ s s s s   

 ), 

initial conditions ( 0 0,q q ) of the FE model, and the output measurement noise vector 

from time  1t  to 1kt +  ( ( )1 1
1: 1 1 2 1, , , yT n kT T T

k k
 + × 

+ + = ∈ v v v v  ), i.e., 

 ( )1: 1 1 1: 1 1: 1 0 0 1: 1, , , ,k k k k k+ + + + += +y h θ u s q q v   (10.4) 

Here ( )1k+ ⋅h  is a nonlinear response function of the nonlinear FE model at time 

1kt + . For notational convenience and without loss of generality, it is assumed that the 

initial nodal displacement and velocity vectors are equal to zero hereafter. 

The unknown time-invariant parameter vector (θ ) contains the unknown 

modeling parameters, which are time-invariant and therefore its evolution can be 

modeled as a random walk according to the Bayesian approach. On the other hand, 

initially assuming that: (i) the different sn  components of the unknown input ground 

acceleration are uncorrelated at each time step (spatially uncorrelated at each time step) 

and  (ii) unknown input ground acceleration at different time steps ( is  and js  for i j≠ ) 

are uncorrelated, then each component is  ( 1 , 2 , ,i N=  , where N is the total number of 

data samples of the input ground accelerations) can be modeled evolving as a random 
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walk. Therefore, the nonlinear joint, i.e. input and model parameter, estimation problem 

at time step ( )1k +  ( 0 ,1 , , 1k N= − ) can be mathematically formulated as 

 
( )

1

1: 1 1 1 1: 1 1: 1,
k k k

k k k k k

+

+ + + + +

= +
 = +

x x γ
y h x u v

 

 

 (10.5) 

where ( ) ( ) ( ) ( ) ( )1 11 2 1
1 1 1 1 1 1, , , , ,

TT T T TT n n kk k
k k k k k k

sθ + + ×+  
+ + + + + +

 = ∈  
x θ s s s s   

   is the 

augmented unknown vector at time 1kt + , 

( ) ( ) ( ) ( ) ( )1 11 2, , , , ,
TT T T TT n n kk k

k k k k k k
sθ + + ×  = ∈  

x θ s s s s   
   is the augmented unknown 

vector at time kt , 1
i
k+s  denotes the unknown ground accelerations at time it  to be 

estimated at time 1kt + , i.e. given the recorded output response quantities and known input 

from time 1t  to 1kt +  ( 1: 1k+y  and 1: 1k+u , respectively), and k =γ process noise which is 

assumed to be a Gaussian noise sequence with zero mean vector and covariance matrix 

( ) ( )1 1n n k n n ks s
k

θ θ+ + × + +      ∈Q  , i.e. ( )~ ,k kγ 0 Q N , and independent of ( )1,2,i i=v  . In 

the first expression of Equation (10.5) it is assumed that 1
1

k k k
k k k
+
+ = + γs s   . This is a 

reasonable assumption based on the fact that earthquake ground motions are usually 

recorded at more than 50 samples per second. Equation (10.5) represents a nonlinear 

state-space model, which enables the use of Bayesian filtering techniques to estimate the 

modeling parameter vector (θ ) and the unknown input ground acceleration time histories 

( s). The dimension of the unknown vector 1k+x  increases as k increases, thus the 

computational burden required to solve the estimation problem increases considerably, 
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making the estimation of 1k+x  ( 0 , 2 , , 1k N= − ) in the case of real-world structures 

under unknown earthquake excitation extremely computationally intensive. Therefore, an 

affordable and simplified approach to reduce the computational cost is proposed. Here, 

the components of s corresponding only to the last L  time steps are considered in the 

estimation. This approximation is based on the fact that in a recursive approach the 

measured data are progressively assimilated in time, therefore input data samples 

belonging far in the past are already properly estimated when the FE model is updated at 

the present time step. Then, Equation (10.5) can be recast into 

 
( )

1

1: 1 1 1 1: 1 1: 1,
k k k

k k k k k

+

+ + + + +

= +
 = +

x x γ
y h x u v

 (10.6) 

where ( ) ( ) ( ) ( ) 12 3 1
1 1 1 1 1 1, , , , ,

TT T T TT xnk L k L k k
k k k k k k

×− + − + +
+ + + + + +

 = ∈  
x θ s s s s   

   is the reduced-

length augmented unknown vector at time 1kt + ,  

( ) ( ) ( ) ( ) 12 3, , , , ,
TT T T TT xnk L k L k k

k k k k k k
×− + − + = ∈  

x θ s s s s   
    is the reduced-length 

augmented unknown vector at time kt , ( )min 1,x sn n n k Lθ= + + , L =memory factor 

such that 1 L N≤ ≤ , and k =γ process noise which is assumed to be a Gaussian noise 

sequence with zero mean vector and covariance matrix x xn n
k

×∈Q  , i.e. ( )~ ,k kγ 0 QN

, and independent of ( )1,2,i i=v  . It is noteworthy that the proposed formulation does 

not account for modeling errors, and their presence might contaminate the estimation of 

modeling parameters and input excitations. 
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In this dissertation, the UKF (Julier and Uhlmann 1997) is used to solve the 

estimation problem defined by the nonlinear state-space model in Equation (10.6). The 

UKF assumes that the posterior pdf ( ) ( )1| 1 1 1: 1 1: 1,k k k k kp p+ + + + +=x x y u  is Gaussian and 

provides estimates of the mean vector and covariance matrix of 1k+x  given only the 

known input and output response measurements from time 1t  to 1kt + , 1: 1k+u  and 1: 1k+y , 

respectively. Therefore, the posterior pdf is defined as 

( ) ( )1| 1 1 1| 1 1| 1; ,k k k k k k kp + + + + + + += xxx x x PN , where ( )1 1| 1 1| 1; ,k k k k k+ + + + +
xxx x PN  represents a 

multivariate Gaussian distribution with the components of 1k+x  as random variables and 

1| 1k k+ +x  and 1| 1k k+ +
xxP  denote the posterior mean and posterior covariance matrix of 1k+x  

given 1: 1k+u  and 1: 1k+y , respectively. 

The UKF uses the unscented transform (UT) to obtain estimates of the mean 

vector and covariance matrix of random vector x  (which includes the unknown input and 

modeling parameters) denoted by x̂  and ˆ xxP , respectively, by defining a set of 

deterministically chosen sample points (referred to as sigma points or SPs) denoted by x . 

Because the UKF avoids analytical linearization of the nonlinear state-space model in 

Equation (10.5), FE response sensitivities with respect to modeling parameters and input 

excitation are not required. Because the scaled UT (Wan and van der Merwe 2000) is 

used here, in the implementation of the UKF, ( )2 1xn +  FE models −each corresponding 

to a SP− need to be run at each time step. Figure 10.1 summarizes the approach proposed 

to estimate the unknown modeling parameters of the nonlinear FE model and the 

unknown input excitation using the UKF. Here ( ) ( )1 1
1

yn ki
k

 + × 
+ ∈y  is the vector of 
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estimated response quantities corresponding to the SP ( )
1

i
k+x  and includes the responses 

from time 1t  to 1kt + , and mW  and cW  are the weighting coefficients of the SPs to estimate 

the mean and covariance matrices, respectively. ( )1 1 1,...,k kdiag+ +=R R R  is a block 

diagonal matrix including the covariance matrices of the output measurement noises from 

1t  to 1kt + . 1| 1ˆ k k+ +x  and 1| 1
ˆ

k k+ +
xxP  denote, respectively, the a posteriori estimates of the mean 

vector and covariance matrix of the unknown augmented vector x  at time 1kt +  given 

1: 1k+y  and 1: 1k+u . 0|0x̂  and 0|0
ˆ xxP  are the initial estimates of the mean and covariance matrix 

of the unknown augmented vector x . It is noted that the SPs ( )
1

i
k+x , 1,..., 2 1xi n= + , are 

defined based on the scaled UT, i.e., they depend on ˆ k kx , ˆ
k k
xxP  and the constant 

parameters α , β , and κ , which values are taken as 0.1α = , 2β = , and 0κ =  (Wan and 

van der Merwe 2000). More details about the UKF and its use in the context of 

calibration of nonlinear FE models can be found in Wan and van der Merwe (2000) and 

Astroza et al. (2014), respectively. 
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Figure 10.1: Pseudo-code of the proposed augmented approach for nonlinear FE model 
updating with unknown input. 

10.3. Numerical application 1: 3D steel frame 

10.3.1. Finite element model and earthquake input excitation 

The first application example consists of a three-dimensional (3D) 4-story 2-by-1 

bay steel frame building subjected to bidirectional seismic base excitations. Nonlinear 

seismic response of the structure is simulated using a nonlinear FE model with force-

based fiber beam-column elements (distributed plasticity) developed in the open-source 

object-oriented software framework OpenSees (Mazzoni et al. 2005). As discussed in 

Taucer et al. (1991), distributed-plasticity FE models are a good alternative for nonlinear 

analysis and response simulation of frame-type structures whose behavior is dominated 
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by flexural-axial interaction. In these mechanics-based nonlinear models, FEs with fiber-

discretized monitored cross sections (integration points or IPs) are used to characterize 

the spread of plastic regions along the element length. The nonlinear material behavior of 

each fiber is defined by uniaxial material constitutive laws modeling the stress-strain 

behavior of the corresponding material. These uniaxial material constitutive laws are 

defined with time-invariant parameters. More details about distributed-plasticity FE 

models using displacement-based and force-based elements can be found in Taucer et al. 

(1991). Translation components 360° and 90° of ground acceleration recorded at the 

Sylmar County Hospital during the 1994 Northridge earthquake are considered as base 

excitation in the longitudinal and transverse direction of the building, respectively (Figure 

10.2). Ground acceleration time histories were recorded at a sampling rate of 50 Hz and 

the peak ground acceleration (PGA) were 0.84g and 0.60g for components 360° and 90°, 

respectively. 

 

Figure 10.2: Acceleration time history of the input seismic motion for the 3D steel 
frame. 

The building is designed as an intermediate moment-resisting frame according to 

the 2006 International Building Code (ICC 2006) for a location in downtown Seattle, 
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WA, with Site Class D soil conditions and a short-period spectral acceleration SMS = 

1.37g and a one-second spectral acceleration SM1 = 0.53g. The frame has a story height of 

3.5 m and bay width of 7.0 m and 8.0 m in the longitudinal (X) and transverse (Z) 

directions, respectively (Figure 10.3a). The frame has four corner and two interior 

columns made of A992 steel with W14×61 and W14×90 cross sections, respectively. 

Longitudinal beams on second and third levels have W21×62 cross section, while on 

fourth and roof levels have W21×55 cross section. Transverse beams on second and third 

levels have W18×40 cross section, while on fourth and roof levels have W18×35 cross 

section. All beams are made of A36 steel. 

The modified Giuffré-Menegotto-Pinto (GMP) model (Filippou et al. 1983) is 

used to model the nonlinear uniaxial stress-strain behavior of the steel fibers. The GMP 

material model depends on ten time-invariant parameters. Five of these parameters, 

which are assumed known in this application example, control the curvature of the 

hysteretic loops and the isotropic hardening. Three primary physical parameters of the 

model consists of modulus of elasticity ( E ), yield strength ( f ), and strain-hardening 

ratio (b ), and will be considered as unknown in the estimation phase. Figure 10.3b shows 

the GMP uniaxial material constitutive law used to model the steel fibers and the three 

primary parameters describing it. 

A single force-based element is used to model each beam-column member. 

Gauss-Lobatto quadrature with seven IPs for columns and beams is used to numerically 

integrate along the length of the elements. The number of IPs on each element is selected 

such that the weight of the IP associated with the section accumulating the deformation 
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(in force-based beam-column elements deformations localize at a single IP) 

approximately equals the expected physical length where deformation concentrates 

(plastic hinge). The plastic hinge length ( PHL ) is taken as 18PHL L= , where L  is the 

element length, as suggested by Ribeiro et al. (2014). 

 

Figure 10.3: (a) 3D steel frame building structure. Blue arrows indicate acceleration 
measurements, Green circles indicate displacement measurements, and Red lines indicate 
location of strain measurements; (b) GMP uniaxial material constitutive law used to 
model the steel fibers; (c) cross section fiber discretization. 

Cross sections of columns and beams are discretized into longitudinal fibers as 

shown in Figure 10.3c. Twelve fibers along web depth ( dwn ), twelve fibers along flange 

width ( bfn ), one fiber along web thickness, and two fibers along flange thickness ( tfn ) 

are considered for all elements' cross sections. Linear section shear and torsion force-

deformation models are aggregated, uncoupled with the inelastic coupled flexural-axial 
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behavior, at the section level and along the element. Nodal masses and distributed gravity 

loads acting on beams are computed from the design loads (ICC 2006) and are shown in 

Figure 10.4. Effects of nonlinear geometry are taken into account by using the P-∆ 

approximation (Filippou and Fenves 2004). Mechanisms of energy dissipation distinct to 

hysteresis due to nonlinear material behavior are modeled using mass and tangent 

stiffness-proportional Rayleigh damping based on the tangent stiffness matrix at the last 

converged step of analysis. A critical damping ratio of 2% for the first and second natural 

periods in the longitudinal direction of the building, T1 = 1.47 sec and T2 = 0.76 sec, is 

considered. 

 

Figure 10.4:  Nodal masses and distributed loads on beams in the FE model of the steel 
frame. 
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10.3.2. Response simulation 

A set of material parameter values are assumed for the steel fibers of beams and 

columns. The values, which are referred to as true modeling parameter values hereafter, 

are: 6 1Ttrue true true true true true true
col col col beam beam beamE , f ,b ,E , f ,bθ 

      with 200true
colE GPa= , 

345true
colf MPa= , 0.04true

colb = , 200true
beamE GPa= ,  250true

beamf MPa= , and 0.03true
beamb = . 

The FE model described in Section 10.3.1 with the true modeling parameters’ values is 

used to simulate the response of the structure to the ground acceleration time histories 

recorded at Sylmar station during the 1994 Northridge earthquake (Figure 10.2). This 

simulated response of the FE model is referred as true response hereafter. 

10.3.3. Estimation of modeling parameters and unknown input 

In the estimation phase different response quantities of the true (simulated) 

response of the structure are polluted by additive white Gaussian noise (AWGN) and 

used as output response measurements. Absolute acceleration response time histories 

(measured by accelerometers) in both translational directions at the four levels of the 

building, relative displacement response time histories (measured by GPS antennas) in 

both translational directions at the fourth and roof levels, and strain response time 

histories (measured by strain gauges) at the bottom of a column and ends of longitudinal 

and transverse beams are assumed to be recorded and used to define different 

combinations of the output response measurements ( y ). The location of the 

accelerometers, GPS, and strain gauges used to measured different output response 
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quantities are represented by blue arrows, green circles, and red lines, respectively, in 

Figure 10.3a. 

Both translational components of ground acceleration time histories used as input 

excitation and the six primary modeling parameters describing the constitutive law of the 

steel fibers in beams and columns are considered as unknown in the estimation phase. Six 

material parameters define the unknown modeling parameter vector 

[ ] 6 1, , , , , T
col col col beam beam beamE f b E f b ×= ∈θ   and the unknown input ground acceleration 

time histories define the unknown input 2 600
1:600

×∈s  . Note that in this application 

example 2sn =  and 600N = . It is noteworthy that the same FE model is used to simulate 

the response of the structure and to conduct the estimation of unknown modeling 

parameters and unknown input excitation, i.e., model uncertainty, which is out of the 

scope of this chapter, is not accounted for. 

10.3.3.1. Structural response recorded by an accelerometer array 

First, it is assumed that only the response time histories measured by the 

accelerometers are available, i.e. 8 1
1k

×
+ ∈y   with 0 ,1 , , 599k =  . Two levels of output 

measurement noise ( v ) are used to pollute the true acceleration responses. The first case 

considers noiseless true acceleration responses to define the measured output response 

data. In the second case a 0.5%g root-mean-square (RMS) zero-mean white Gaussian 

noise is added, after completion of the structural response simulation, to each true 

absolute acceleration response to pollute the true responses, i.e., the actual covariance 

matrix of the output measurement noise is ( )22 2
80.24 10 m s−× I  where i i i= ×I  identity 
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matrix. Statistically uncorrelated realizations of noise are considered to pollute the 

different true acceleration responses. The polluted measured output response ( y ) is 

employed to estimate the unknown augmented vector ( x ), which includes the modeling 

parameter vector (θ ) and the time histories of both components of the earthquake base 

excitation ( s). Because in practice the level of measurement noise is not known exactly 

and can only be estimated based on engineering experience and judgment, in the 

estimation it is assumed that the output measurement noise is a zero-mean Gaussian 

process with a covariance matrix ( )23 2
1 80.87 10k m s−
+ = = ×R R I , i.e., a standard 

deviation (or RMS) of 0.3%g is considered for the output measurement noise. Time-

invariant second order statistics with zero-mean and covariance matrix n nx x
k

×= ∈Q Q 

, where ( ) ( )min 1, 6 2min 1,x sn n n k L k Lθ= + + = + + , are assumed for the process noise 

kγ . The diagonal entries of Q  are assumed equal to 2
0|0ˆ( )× iq x  where 1, , xi n=  and 

51 10q −= × , i.e., the process noise covariance matrix is constructed assuming a 

coefficient of variation of 51 10−×  of the initial estimate of the modeling parameters and 

unknown input excitations. 

The initial unknown augmented vector is equal to 8 1
0|0 0|0 0|0,ˆ ˆˆ

TT T × = ∈ x θ s  . For 

the modeling parameters ( θ̂ ), the initial estimate is assumed as 

6 1
0|0

ˆ 1.4 ,0.7 ,0.8 ,1.5 ,0.8 ,1.3
Ttrue true true true true true

col col col beam beam beamE f b E f b × = ∈ θ  . For the unknown 

input excitations, the initial estimate is assumed equal to   2 1
0|0

ˆ 0.01,0.01 Ts 

  . The 
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initial estimate of the covariance matrix 0|0
ˆ xxP  is assumed to be diagonal, i.e., initial 

estimates of the modeling parameters and unknown input excitation are statistically 

uncorrelated. The terms related to the modeling parameters and to the unknown input 

excitation are computed assuming a coefficient of variation of 10% of the initial estimate 

of the mean 0|0x̂ , i.e., the diagonal entries of 0|0
ˆ xxP  are computed as 2

0|0ˆ( )ip x×  where 

1, , xi n=   and 0.10p = . It is noted that at time step  1k   the a priori standard 

deviation of the last sn  components of x  (which corresponds to unknown input 

excitation at that time step, 1
1

k
k
+
+s ), are taken equal to 2

|
ˆ( )k

k kp×s , while other components 

of 1
ˆ

k+ |k
xxP  are obtained from the corresponding elements of the a posteriori covariance at 

previous time step ( ˆ
k|k
xxP ). It is noteworthy that in the filtering stage the modeling 

parameters are normalized by their corresponding true values and the acceleration time 

histories are in the unit of m/s2. This implies that all the variables involved in the filtering 

have comparable amplitudes, which make the estimation problem better conditioned. 

The framework shown in Figure 10.1 is used to estimate the unknown modeling 

parameters and the time history of both unknown input excitations. The number of SPs 

required at each time step is ( )2 1 2 6 2min 1, 1xn k L+ = × + + +   . This means that 

( )13 4min 1,k L+ +    nonlinear FE models (one for each SP) need to be run when 

estimating the modeling parameters and input excitations at time step  1k  . Different 

values of the memory factor ( L ) are considered, namely L=10, 20, 30, 50, and 600. It is 

noteworthy that in the case L=600, when estimating the modeling parameters and 
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unknown inputs at time step kt k t= ∆ ( 1,...k N= ) the input excitations from 

1 0.02sect t= ∆ =  to kt k t= ∆  are included in the augmented unknown vector [see 

Equation (10.5)]. It is noted that in the case of noiseless output response measurements, 

only the case of L=10 is shown here, because the other values of L provide almost 

identical results. 

Figure 10.5 shows the time history of the a posteriori estimate of the modeling 

parameters obtained with the noiseless acceleration-only output response measurements 

and L=10. Similarly, Figure 10.6 shows the time history of the estimates obtained with 

the noisy acceleration-only output response measurement and L=20 and L=50. Table 10.1 

reports the final estimates of the modeling parameters, |
ˆ

N Nθ , normalized by their 

corresponding true parameter values for the two levels of output measurement noise 

considered. In the case of noiseless acceleration-only output response measurements with 

L=10 (Figure 10.5 and Table 10.1), the estimate of the modeling parameters converge to 

their corresponding true values with relative errors lower than 4%, i.e., the proposed 

estimation framework accurately estimates the unknown modeling parameters. In the 

case of noisy acceleration-only output response measurements (Figure 10.6 and Table 

10.1), the estimate of both modulus of elasticity for columns and beams ( colE  and beamE ) 

is accurate with relative error lower than 2% for all values of memory factor L. 

Estimation of yield strength of fibers in columns and beams ( colf  and beamf ) is accurate 

for all values of L with relative error less than or equal to 4% and 5%, respectively. The 

error in the estimation of the yield strengths decreases as L increases. Errors associated to 

the estimation of strain-hardening ratios (post-yield parameters), colb  and beamb , are the 
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highest, and they decrease as L increases, reaching errors of 0% and 5% for L=600, 

respectively. It is noted that strain-hardening ratios ( colb  and beamb ) influence the response 

of the nonlinear FE model when the strain ductility demand of enough steel fibers 

increases sufficiently and, as will be discussed later in Section 10.3.5, the acceleration 

output response measurements are not very sensitive to these parameters. As will be 

discussed later, fibers of columns experience more hysteretic cycles and larger excursions 

in the nonlinear range of the material constitutive law compared to fibers of beams. As a 

result of this, output response measurements contain more information about colb  than 

beamb , which implies a better estimation of the former. On the other hand, acceleration 

output response measurements are very sensitive to the moduli of elasticity ( colE  and 

beamE ) from the beginning of the response, because before the strong motion part, the 

response of the structure is linear elastic and therefore sensitive to the initial elastic 

stiffness of the structure. When some fibers start to yield at around 2.5 sec, the measured 

response start to contain information about yield strengths ( colf  and beamf ) and strain-

hardening ratios. 
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Figure 10.5: Time history of the a posteriori estimates of the modeling parameters of the 
steel frame in the case of noiseless acceleration-only output response measurements with 
L=10. 

 

Figure 10.6: Time history of the a posteriori estimates of the modeling parameters of the 
steel frame in the case of noisy acceleration-only output response measurements with 
L=20 and L=50. 
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Table 10.1: Final estimates of the modeling parameters of the steel frame in the case of 
acceleration-only output response measurements. 

Output noise 
(%g RMS) 

Memory 
factor (L) 

Modeling parameter 
col
true
col

E
E

 col
true

col

f
f

 col
true
col

b
b

 beam
true
beam

E
E

 beam
true

beam

f
f

 beam
true
beam

b
b

 

0.0 10 1.00 1.00 1.03 1.00 1.00 1.04 

0.5 

10 0.99 1.04 1.23 1.02 1.05 1.11 
20 0.99 1.02 1.07 1.02 1.04 0.87 
30 1.00 1.01 1.00 1.01 1.02 0.84 
50 1.00 1.00 1.00 1.01 1.01 0.91 
600 1.00 1.00 1.00 1.00 1.00 0.95 

Figure 10.7 shows the time histories of the true and estimated input excitations 

(i.e., both translational components recorded at the Sylmar station during the 1994 

Northridge earthquake) in the case of noisy acceleration-only output response 

measurements with L=20. Figure 10.7a shows the comparison between the true and actual 

estimate (unfiltered) of the unknown input time histories. It is observed that estimated 

time histories include a low-frequency component inducing a permanent drift in the 

estimation, effect that has been already detected in previous studies (e.g. Zhang et al. 

2011, Sun and Betti 2013, Naets et al. 2015). Because the formulation proposed in this 

chapter is intended to be used in an off-line fashion, the permanent drift can be eliminated 

using a high-pass filter (HPF). An infinite impulse response (IIR) Butterworth filter of 

order 7 with cut-off frequency at 0.15 Hz is used here. Figure 10.7b shows the 

comparison between the true and the estimated input time histories after application of 

the HPF. The permanent drift is eliminated after the application of the HPF and 

consequently the match between the true and estimated input acceleration time histories 

improves considerably. 



www.manaraa.com

417 
 

 

Figure 10.7: Comparison of the true and estimated input time histories to the steel frame 
in the case of noisy acceleration-only output response measurements with L=20. (a) 
Unfiltered estimations, (b) Filtered estimations. 

Table 10.2 summarizes the relative RMS error (RRMSE) between the true and 

estimated input excitations, for both unfiltered and filtered cases. Note that the RRMSE 

between two signals 1z  (reference) and 2z  is compute as 

[ ] ( ) ( )2 21 2 1
1 1% 1 1 100Nt Nt

k kk k kRRMSE Nt z z Nt z= =
   = − ×∑ ∑      

, where Nt  is the total 

number of data samples. In the case of noiseless output response measurements, no 

permanent drift in the estimate of the unknown input excitations occurs. In this case, the 

estimation of the input excitations is very accurate, with RRMSE lower than 3%. In the 

case of noisy acceleration-only output response measurements the RRMSE decrease as L 

increases, consistently with the results obtained in the estimation of modeling parameters 

(Table 10.1). Based on the results shown in Table 10.2, it can be concluded that the 

estimation of the unknown input excitations is accurate, with RRMSE lower than 8.2% 
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when the estimates of the input excitations are low-pass filtered to remove the permanent 

drift. It is noted that the presence of spurious low-frequency components in the estimated 

input excitations are caused by the numerical integration of the noisy output response 

measurements and because no responses sensitive to long-period forces are considered in 

the output response measurements. 

Table 10.2: RRMSEs (in %) between the true and estimated input excitations to the steel 
frame in the case of acceleration-only output response measurements. 

Output noise 
(%g RMS) 

Memory 
factor (L) 

RRMSE (%) – Input excitation 
Sylmar 360° Sylmar 90° 

Unfiltered Filtered Unfiltered Filtered 
0.0 10 1.6 1.4 3.1 2.0 

0.5 

10 117.5 7.5 38.0 6.6 
20 61.1 8.2 13.3 4.8 
30 23.2 4.4 5.4 3.4 
50 17.0 3.7 3.2 3.1 

600 11.9 3.2 2.4 2.3 

To further verify that the process to jointly estimate the unknown modeling 

parameters and input excitations given only the output response measured by the sparse 

accelerometer array is successful, the discrepancy between the true and estimated output 

response measurements is studied. The RRMSE between the true responses and the 

corresponding responses computed using the final estimates of the modeling parameters 

and estimated input excitations are computed (Table 10.3). It is noted that the unfiltered 

estimate of the input excitations are used here to compute the estimated response. In 

Table 10.3,  the output measurement ija  represents the absolute acceleration time history 

response at level i  in direction j , where l = longitudinal and t =  transverse directions, 

respectively. In the case of noiseless output response measurements, the RRMSE are less 

than or equal to 0.6% indicating the excellent agreement between the true and estimated 
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output response measurements. In the case of noisy measurement, the RRMSE between 

true and estimated output responses decrease as L increases, which is expected based on 

the results from Table 10.1 and Table 10.2. In the case of L=10, the RRMSEs are less than 

or equal to 8%, and for higher values of L, the RRMSEs are lower than 4%, which 

together with the results presented in Table 10.1 and Table 10.2 confirms the successful 

performance of the proposed framework to estimate the modeling parameters and input 

excitations given only the output response measurements. 

Figure 10.8 compares the true and estimated acceleration time histories used as 

output response measurements in the case of noisy measurements with L=20. The 

excellent agreement between the true and estimated responses is clearly observed, with 

RRMSEs lower than 5.1%. This confirms the minor effect that the low-frequency 

components in the estimated input excitations have in the measured acceleration 

responses. 

Table 10.3: RRMSEs (in %) between the true measured responses of the steel frame and 
their corresponding estimated responses based on the final estimate of the modeling 
parameters and the estimated input excitations (unfiltered) in the case of acceleration-
only output response measurements. 

Output noise 
(%g RMS) 

Memory 
factor (L) 

RRMSE (%) – Output response measurement 
2la  3la  4la  5la  2ta  3ta  4ta  5ta  

0.0 10 0.3 0.3 0.3 0.4 0.6 0.5 0.5 0.6 

0.5 

10 7.4 7.6 6.7 6.1 6.8 6.5 6.0 6.4 
20 3.2 3.2 2.9 2.6 3.8 3.6 3.6 3.4 
30 1.5 1.5 1.3 1.1 1.9 1.9 2.2 1.5 
50 1.4 1.4 1.2 1.0 1.6 1.6 1.8 1.3 
600 1.3 1.3 1.1 0.9 1.5 1.5 1.7 1.2 
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Figure 10.8: Comparison of the true measured and estimated acceleration response of the 
steel frame based on estimated input (unfiltered) and final estimate of modeling 
parameters in the case of noisy acceleration-only output response measurements with 
L=20. 

To compare unobserved response quantities, Figure 10.9 shows different global 

and local responses predicted from the FE model based on the true input excitations and 

true values of the modeling parameters (true responses) and their counterparts obtained 

using the final estimates of the modeling parameters and estimated input excitations 

(filtered). Global responses consist of the roof drift ratio (relative displacement of the top 

of the building normalized by its total height) time history in the longitudinal direction (

xRDR ) and base shear time history in the transverse direction normalized by the total 

weight of the building ( z
bV W ). Section level responses consist of the moment (M) 

versus curvature (κ) at the base of a column (section 4 – 4 in Figure 10.3a) and at the end 

of a longitudinal beam (section 5 – 5 in Figure 10.3a). Finally, fiber level responses 

comprise the stress (σ) versus strain (ε) response of a corner steel fiber (see Figure 10.3c) 



www.manaraa.com

421 
 

at the bottom of a column (section 4 – 4 in Figure 10.3a) and at the end of a transverse 

beam (section 6 – 6 in Figure 10.3a). The results show that the agreement between true 

and estimated unobserved global response quantities is excellent with both L=20 and 

L=50. At the section level the match is very good and the case with L=50 outperforms the 

case with L=20. For the fiber responses, the agreement between the true and estimated 

responses is also very good, and it is slightly better for the column's fiber compared to the 

beam's fiber with both L=20 and L=50. From the fiber responses, it is observed that the 

fibers of the columns experienced more and larger excursions in the post-yield zone of 

the stress-strain constitutive law, which suggests that the output response measurements 

contain more information about the post-yield behavior of columns' fibers than about 

beams' fibers. This observation is in agreement with the results in Table 10.1. 

The good agreement between different true and estimated unobserved global and 

local response quantities confirm the very good performance of the proposed 

methodology and its capabilities for damage identification purposes. Using the estimated 

modeling parameters and input excitations, the updated nonlinear FE model can be 

interrogated to detect, localize, classify, and assess the damage in the structure, from 

global to local resolution levels. 
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Figure 10.9:  Comparison of the true unobserved responses and estimated unobserved 
responses of the steel frame based on estimated input and final estimate of modeling 
parameters. Case of noisy acceleration-only output response measurements with L=20 
and L=50. (a) roof drift ratio time history in the longitudinal (X) direction, (b) normalized 
base shear time history in the transverse (Z) direction, (c) moment versus curvature at the 
base of a column (section 4 − 4 in Figure 10.3a), (d) moment versus curvature at the end 
of a longitudinal beam (section 5 − 5 in Figure 10.3a), (e) stress versus strain in a corner 
steel fiber at the base of a column (section 4 − 4 in Figure 10.3a), (f) stress versus strain 
in a corner steel fiber at the end of a transverse beam (section 6 − 6 in Figure 10.3a). 

The results exhibited in this section show the good performance of the proposed 

methodology to estimate unknown modeling parameters of nonlinear FE models and 

unknown input excitations. In the case of noisy acceleration-only output response 

measurements, a permanent drift due to a spurious low-frequency component arise in the 

estimation of the input excitations. These low-frequency components in the input 
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excitations do not affect the acceleration response measurements, which are non-sensitive 

to long-period force excitations. Because the proposed methodology works in an offline 

fashion, a HPF is applied to the estimated input excitations to remove the low-frequency 

components. The use of the final estimates of the modeling parameters and the low-pass 

filtered estimated input excitations allow to predict global and local unobserved response 

quantities with excellent accuracy. 

10.3.3.2. Effect of heterogeneous response measurements 

The effect of considering heterogeneous output response measurements is studied 

in this section. In a previous study, Astroza et al. (2015) concluded that the use of 

different type of measurements improves the identifiability of unknown modeling 

parameters in the case of known input excitation. In this section, the effect of considering 

displacement and strain response measurements, in addition to acceleration response 

measurements, is investigated. Because results presented in Section 10.3.1 showed that 

the case of noiseless output response measurements provides excellent estimation results 

for modeling parameters and input excitations with acceleration-only output response 

measurements, in this section only the case of noisy heterogeneous output response 

measurements is considered. 

To pollute the true responses, 2.0 mm  and 0.5 mm m  RMS zero-mean white 

Gaussian noises are added, after completion of the response simulation phase, to the each 

true relative displacement and strain response measurements, respectively. This means 

that the actual noise covariance of each displacement and strain response measurement is 

24.0 mm  and ( )20.25 mm m , respectively. Statistically uncorrelated realizations of noise 



www.manaraa.com

424 
 

are assumed to contaminate the different true output response measurements. Three cases 

of heterogeneous output response measurements are analyzed and in all of them it is 

assumed that the eight acceleration response measurements considered in Section 

10.3.3.1 are also available. In a first case, four relative displacements corresponding to 

both translational components at fourth and roof levels (see green circles in Figure 10.3a) 

are also assumed to be measured, i.e., 12 1
1k

×
+ ∈y  . A second case considers that strains 

in three corner steel fibers located at specific cross-sections (see red lines in Figure 10.3a) 

are measured in addition to the acceleration responses, i.e., 11 1
1k

×
+ ∈y  . Finally, a third 

case assumes that accelerations, displacements, and strains previously described are 

measured, i.e., 15 1
1k

×
+ ∈y  . For each case, the polluted output response measurements (

y ) are employed to estimate the unknown modeling parameters of the nonlinear FE 

model and the unknown time histories of both components of the earthquake input 

excitation. As explained in Section 10.3.3.1, in the estimation process the values of the 

variances to construct the output measurement noise covariance matrix ( R ) are taken 

different to the ones used to pollute the responses. Noise covariances of 22.25 mm  and 

( )20.09 mm m  are assumed for the displacement and strain response measurements, 

respectively, i.e. standard deviation (or RMS) of 1.5 mm  and 0.3 mm m  are considered in 

R . Similarly to the acceleration-only output response measurements case, time-invariant 

second order statistics with zero-mean and covariance matrix k =Q Q , are assumed for 

the process noise kγ , with diagonal entries of Q  taken as 2
0ˆ( )iq x×  where 

1, , 6 2xi n L= = +  and 51 10q −= × . The same initial values of the unknown augmented 
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state vector ( 0|0x̂ ) (which includes both modeling parameters, 0|0θ̂ , and unknown input 

excitations, 0|0ŝ ) and initial estimate of the covariance matrix ( 0|0
ˆ xxP ) as described in 

Section 10.3.1 are assumed. The same values of the memory factor (L) are studied in the 

case of heterogeneous output response measurements. 

Figure 10.10 shows the time history of the a posteriori estimates of the modeling 

parameters (normalized by their true values) in the case of noisy heterogeneous output 

response measurements with L=50. It is observed that inclusion of displacement and 

strain response measurements improves the accuracy in the estimation of the modeling 

parameters, especially for post-yield parameters colb  and beamb . Table 10.4 summarizes 

the final estimates of the modeling parameters normalized by their corresponding true 

values. Accurate estimation of colE , beamE , colf , and beamf  is obtained in the different 

cases of heterogeneous output response measurements and with different values of L, and 

their estimation accuracy slightly improves compared to the case of acceleration-only 

measurements (see Table 10.1). Moreover, the accuracy in the estimation of colb  and 

beamb  significantly improve when heterogeneous output responses are measured, 

especially when both displacements and strains are considered and L≥20. This is due to 

the fact that displacement and strain responses are more sensitive with respect to post-

yield parameters than acceleration response measurements. 
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Figure 10.10: Time history of the a posteriori estimates of the modeling parameters of 
the steel frame in the case of noisy heterogeneous output response measurements with 
L=50. 

Figure 10.11 shows the time histories of the true and estimated input excitations 

in the case of noisy heterogeneous output response measurements with L=50. Figure 

10.11a shows the comparison between the true and actual estimate (unfiltered) of the 

unknown inputs. It is observed that the spurious low-frequency component in the 

estimated input excitations is negligible. When displacement response measurements are 

considered, the spurious low-frequency components in the estimated input excitations are 

eliminated because displacement responses, contrary to acceleration responses, are 

sensitive to long-period force excitations. Figure 10.11b shows the comparison between 

the true and the high-pass filtered estimated input time histories. The agreements of the 

filtered and unfiltered versions of the estimated input time histories with respect to the 

true input excitations are practically identical. 
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Table 10.4: Final estimates of the modeling parameters of the steel frame in the case of 
noisy heterogeneous output response measurements. 

Type of response 
measurement 

Memory 
factor (L) 

Modeling parameter 

col
true
col

E
E

 col
true

col

f
f

 col
true
col

b
b

 beam
true
beam

E
E

 beam
true

beam

f
f

 beam
true
beam

b
b

 

Case 1: 
Acceleration  

and 
 Displacement 

10 0.99 1.02 1.31 1.03 1.07 1.13 
20 0.99 1.01 0.97 1.01 1.01 0.94 
30 1.00 1.00 0.99 1.01 1.00 0.97 
50 1.00 1.00 1.00 1.00 1.00 0.97 
600 1.00 1.00 1.01 1.00 1.00 0.98 

Case 2: 
Acceleration 

and 
Strain 

10 1.00 1.01 1.54 1.01 1.06 1.33 
20 0.99 1.02 1.16 1.02 1.03 1.13 
30 1.00 1.00 1.06 1.01 1.01 1.01 
50 1.00 1.00 1.03 1.00 1.00 0.99 
600 1.00 1.00 1.01 1.00 1.00 1.00 

Case 3: 
Acceleration,  
Displacement, 

and 
Strain 

10 0.98 1.03 1.14 1.03 1.07 1.11 
20 1.00 1.01 1.02 1.01 1.01 0.99 
30 1.00 1.00 1.02 1.01 1.00 1.00 
50 1.00 1.00 1.01 1.00 1.00 1.00 
600 1.00 1.00 1.02 1.00 1.00 1.00 

 
Figure 10.11: Comparison of the true and estimated input time histories to the steel 
frame in the case of noisy heterogeneous output response measurements with L=50. (a) 
Unfiltered estimations, (b) Filtered estimations. 

Table 10.5 summarizes the RRMSE between the true and estimated input 

excitations, for both unfiltered and filtered cases. It is clearly observed that the spurious 
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low-frequency component is minimized when displacement output response 

measurements are considered because the RRSME for unfiltered and filtered cases are 

very similar. Consistently with results shown in Section 10.3.3.1, RRMSEs decrease as L 

increases. Comparing Table 10.5 and Table 10.2, it is concluded that a better estimation 

of the unknown input excitations is obtained when displacement output response 

measurements are considered. 

Table 10.5: RRMSEs (in %) between the true and estimated input excitation to the steel 
frame in the case of noisy heterogeneous output response measurements. 

Type of response 
measurement 

Memory 
factor (L) 

RRMSE (%) – Input excitation 
Sylmar 360° Sylmar 90° 

Unfiltered Filtered Unfiltered Filtered 

Case 1: Acceleration 
and 

Displacement 

10 14.9 12.2 7.3 6.6 
20 2.3 2.3 3.6 3.1 
30 1.6 1.2 2.2 1.9 
50 1.6 1.1 2.1 1.9 
600 1.5 1.1 2.1 1.9 

Case 2: Acceleration 
and 

Strain 

10 45.6 9.2 22.6 6.5 
20 34.5 7.8 17.7 4.4 
30 7.7 4.8 4.3 3.6 
50 5.0 4.0 2.5 2.1 
600 2.9 2.6 2.3 2.1 

Case 3: Acceleration, 
Displacement, 

and 
Strain 

10 15.9 13.6 7.2 6.6 
20 2.3 1.7 2.3 2.0 
30 1.6 1.4 2.1 1.9 
50 1.6 1.4 2.1 1.9 
600 1.5 1.4 2.1 1.9 

Table 10.6 summarizes the RRMSE between the true heterogeneous output 

response measurements and the corresponding responses computed using the final 

estimates of the modeling parameters and estimated input excitations (unfiltered). In this 

table, ija  and ijd  stand for the absolute acceleration and relative displacement time 

history response at level i  in direction j , respectively, where l = longitudinal and t =

transverse directions, and cε , bxε , and bzε  are the strain time histories measured in the 
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corner fiber of the cross-section of column, longitudinal beam, and transverse beam as 

shown in Figure 10.3a. When accelerations and displacements (Case 1) and accelerations, 

displacements, and strain (Case 3) are measured, the RRMSEs are small (most of them 

lower than 10%) and they decrease as L increases. In the case that accelerations and 

strains (Case 2) are measured, low RRMSEs are obtained for the acceleration responses 

but larger RRMSEs are obtained for the strain responses, especially when L≤20. This is 

due to the fact that spurious low-frequency components in the estimated input excitations 

are present with important effects when accelerations and strains responses (no 

displacements included) are considered. These low-frequency components in the 

estimated input excitations affect the responses of the structure that are sensitive to quasi-

static forces, such as displacements, curvatures, and strains. 

Table 10.6: RRMSEs (in %) between the true response and the estimated response of the 
steel frame based on the final estimate of the modeling parameters and the estimated 
input excitation in the case of noisy heterogeneous output response measurements. 

Type of 
response 

measurement 

Memory 
factor (L) 

RRMSE (%) – Output response measurement 

2la
 

3la
 

4la
 

5la
 

2ta
 

3ta
 

4ta
 

5ta
 

4ld
 

5ld
 

4td
 

5td
 

cε  bxε
 

bzε
 

Case 1: 
Acceleration 

and 
Displacement 

10 3.4 3.3 2.7 3.5 4.9 4.2 4.1 4.5 7.5 7.4 5.0 5.1 – – – 
20 1.3 1.3 1.2 1.0 1.8 1.8 1.8 1.5 1.1 1.0 0.8 0.8 – – – 
30 1.2 1.2 1.1 0.9 1.6 1.6 1.7 1.2 0.6 0.6 0.3 0.3 – – – 
50 1.2 1.1 1.0 0.8 1.5 1.5 1.6 1.2 0.5 0.5 0.2 0.2 – – – 

600 1.2 1.1 1.0 0.8 1.5 1.5 1.6 1.1 0.5 0.5 0.2 0.2 – – – 

Case 2: 
Acceleration 

and 
Strain 

10 4.3 4.1 3.2 4.0 5.5 5.0 5.0 5.2 – – – – 22.7 21.7 20.0 
20 2.1 2.0 1.8 1.9 3.3 3.3 3.4 2.8 – – – – 13.4 19.2 24.4 
30 1.3 1.2 1.1 1.0 1.9 1.8 2.0 1.5 – – – – 4.4 4.8 3.9 
50 1.2 1.1 1.0 0.8 1.5 1.6 1.7 1.2 – – – – 2.2 2.1 2.0 

600 1.2 1.1 1.0 0.8 1.5 1.5 1.7 1.2 – – – – 1.4 1.1 0.7 
Case 3: 

Acceleration, 
Displacement, 

and 
Strain 

10 3.3 3.2 2.7 3.5 5.3 4.6 4.3 4.8 8.5 8.4 4.7 4.8 10.1 13.3 9.2 
20 1.3 1.3 1.2 1.0 1.8 1.7 1.8 1.4 1.1 1.1 0.8 0.8 1.1 1.8 0.9 
30 1.2 1.2 1.0 0.9 1.6 1.5 1.7 1.2 0.6 0.5 0.3 0.3 0.9 0.6 0.6 
50 1.2 1.1 1.0 0.8 1.5 1.5 1.6 1.2 0.5 0.5 0.2 0.2 0.8 0.5 0.3 

600 1.2 1.1 1.0 0.8 1.5 1.5 1.6 1.2 0.5 0.5 0.2 0.2 0.8 0.4 0.2 
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Figure 10.12 and Figure 10.13 compares the true and estimated time histories 

used as output responses in the case of noisy acceleration/displacement and 

acceleration/displacement/strain measurements with L=50, respectively. An excellent 

agreement between the true and estimated responses is observed in both cases, with 

RRMSEs lower than 2% for all measured responses. Because the estimated responses are 

obtained using the estimated input excitations (unfiltered), it is confirmed that the 

spurious low-frequency components in the estimated inputs are practically eliminated 

when displacement response measurements are considered. Recall that displacement and 

strain responses are sensitive to low-frequency components in the input excitations. 

 

Figure 10.12: Comparison of the true measured and estimated acceleration response of 
the steel frame based on estimated input and final estimate of modeling parameters in the 
case of noisy acceleration and displacement response measurements with L=50. 
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Figure 10.13: Comparison of the true measured and estimated acceleration response of 
the steel frame based on estimated input and final estimate of modeling parameters in the 
case of noisy acceleration, displacement, and strain response measurements with L=50. 

Figure 10.14 compares different global and local unobserved response quantities 

of the FE model based on the true input excitations and true values of the modeling 

parameters (true responses) and the corresponding responses based on the final estimates 

of the modeling parameters and estimated input excitations (filtered) with L=50. As in 

Section 10.3.3.1, global responses consist of the xRDR  and z
bV W , section level 

responses consist of the M–κ at the base of a column (section 4 – 4 in Figure 10.3a) and 

at the end of a longitudinal beam (section 5 – 5 in Figure 10.3a), and fiber level responses 

comprise σ–ε of a corner steel fiber (see Figure 10.3c) at the bottom of a column (section 
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4 – 4 in Figure 10.3a) and at the end of a transverse beam (section 6 – 6 in Figure 10.3a). 

An excellent agreement for all the responses is observed when acceleration/displacement 

(Case 1) and acceleration/displacement/strain (Case 3) are considered in the output 

response measurements. 

 

Figure 10.14: Comparison of the true unobserved responses and estimated unobserved 
responses of the steel frame based on estimated input and final estimate of modeling 
parameters. Case of noisy heterogeneous output response measurements with L=50. (a) 
roof drift ratio time history in the longitudinal (X) direction, (b) normalized base shear 
time history in the transverse (Z) direction, (c) moment versus curvature at the base of a 
column (section 4 − 4 in Figure 10.3a), (d) moment versus curvature at the end of a 
longitudinal beam (section 5 − 5 in Figure 10.3a), (e) stress versus strain in a corner steel 
fiber at the base of a column (section 4 − 4 in Figure 10.3a), (f) stress versus strain in a 
corner steel fiber at the end of a transverse beam (section 6 − 6 in Figure 10.3a). 



www.manaraa.com

433 
 

The excellent estimation results of the modeling parameters and input excitations 

and excellent agreement between different true and estimated unobserved response 

quantities when considering heterogeneous measurements verify the excellent 

performance of the proposed methodology. In addition, the flexibility of the methodology 

to incorporate measurements collected using different types of sensors and its capabilities 

for damage identification purposes even in the case of unknown input excitations are 

confirmed. 

10.3.3.3. Computational costs 

An important objective of the proposed framework is to provide a tool for rapid 

condition assessment of structures subjected to unknown input excitations after 

potentially damage-inducing earthquake events. Therefore, the computational cost and 

time required to conduct the estimation are important variables that must be considered, 

especially when considering the importance of the period of time following a disastrous 

event. The computational cost of the proposed algorithm is evaluated in terms of process 

time required to complete the estimation. All the results presented in this section were 

obtained using a desktop workstation with an Intel Xeon CPU E5-2630 2.6-GHz 

processor and 32-GB random-access memory.  Table 10.7 shows the computational cost 

associated to the estimation process in the case of noisy heterogeneous output response 

measurements (accelerations, displacements, and strains) for different values of the 

memory factor (L). It is observed that the computational cost increases considerably as L 

increases. Recall that the UKF requires to run ( )13 4min 1,k L+ +    nonlinear FE models 

(number of SPs) when estimating the modeling parameters and input excitations at time 
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step  1k  . Based on these results it is concluded that the application of the proposed 

framework for detailed damage diagnosis of realistic civil structures (like the 3D steel 

frame building considered in this application example) is feasible, and a description of 

the state of the structure can be obtained within a fraction of a day to a few days after the 

occurrence of the damaging-event. 

Table 10.7: Computational cost of the estimation process in Case 3 of the steel frame 
(noisy acceleration, displacement, and strain response measurements) for different values 
of L. 

Type of response measurement Memory factor (L) Process time (hr) 

Case 3: Acceleration, 
Displacement, and Strain 

10 8.2 
20 14.3 
30 20.5 
50 31.2 
600 137.5 

10.3.3.4. Performance of the proposed framework in the presence of high output 

measurement noise 

Results presented in Section 10.3.3.1 and 10.3.3.2 assumed a level of output 

measurement noise moderately higher than the ones expected in real world applications. 

In this section, the performance of the proposed joint input-parameter estimation 

framework in the presence of level of noises much larger than those expected from 

current sensors available for earthquake engineering applications is investigated. A 

memory factor 30L =  is considered for the cases of acceleration-only, acceleration and 

displacement, and acceleration, displacement, and strain response measurements. 

To pollute the true responses, 1.5%g, 5.0 mm  and 1.0 mm m   RMS zero-mean 

white Gaussian noises are added, after completion of the structural response simulation, 
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to each true absolute acceleration, displacement, and strain response. In the estimation 

phase, standard deviations (or RMS) of 1.0%g, 3.0 mm , and 0.5 mm m  are assumed in 

matrix R  for acceleration, displacement, and strain measurements, respectively, i.e., 

noise covariances of ( )23 29.62 10 m s−× , 29.0mm , and ( )20.25 mm m  are considered, 

respectively. 

Table 10.8 summarizes the final estimates of the modeling parameters normalized 

by their corresponding true values. Accurate estimation of colE , beamE , colf , and beamf  is 

obtained in the different cases of heterogeneous output response measurements in the 

case of high measurement noise. The accuracy in the estimation of colb  and beamb  

significantly improve when heterogeneous output responses are measured, especially 

when both displacements and strains are considered. 

Table 10.8: Final estimates of the modeling parameters of the steel frame in the case of 
high output measurement noise with 30L = . 

Type of response 
measurement 

Modeling parameter 

      

Acceleration-only 0.99 1.02 1.00 1.04 1.04 0.62 

Acceleration and 
displacement 0.99 1.01 0.98 1.03 1.01 0.93 

Acceleration and strain 0.99 1.02 1.10 1.02 1.02 0.99 

Acceleration, displacement, 
and strain 0.99 1.01 1.06 1.03 1.01 0.99 

Table 10.9 summarizes the RRMSE between the true and estimated input 

excitations, for both unfiltered and filtered cases. Similar results to those presented for 

moderate level of output measurement noise in Sections 10.3.3.1 and 10.3.3.2  are 
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observed. The spurious low-frequency component is detected when only acceleration 

measurement are considered, while it is significantly reduced when displacement 

measurements are included. 

Table 10.9: RRMSEs (in %) between the true and estimated input excitation to the steel 
frame in the case of high output measurement noise with 30L = . 

Type of response measurement 
RRMSE (%) – Input excitation 

Sylmar 360° Sylmar 90° 
Unfiltered Filtered Unfiltered Filtered 

Acceleration-only 80.0 10.3 12.9 8.7 

Acceleration and displacement 4.7 4.4 6.4 6.2 

Acceleration and strain 23.4 13.9 9.1 8.9 

Acceleration, displacement, and strain 4.8 4.4 6.3 6.2 

Table 10.10 presents the RRMSE between the true and estimated (computed using 

the final estimates of the modeling parameters and the unfiltered estimated input 

excitations) output response measurements. The same nomenclature as described in 

Section 10.3.3.2 is used here. Low RRMSEs between true and estimated output response 

measurements confirm the successful performance of the joint input-parameter estimation 

framework proposed, even for the case of high output measurement noise. 

Table 10.10: RRMSEs (in %) between the true response and the estimated response of 
the steel frame based on the final estimate of the modeling parameters and the estimated 
input excitation in the case of high output measurement noise with 30L = . 

Type of response 
measurement 

RRMSE (%) – Output response measurement 

2la  3la  4la  5la  2ta  3ta  4ta  5ta  4ld  5ld  4td  5td  cε  bxε  bzε  

Acceleration-only 5.0 4.9 4.4 3.6 5.7 5.6 6.4 4.5 – – – – – – – 

Acceleration and 
displacement 3.6 3.5 3.1 2.6 4.8 4.7 5.0 3.7 1.4 1.4 0.6 0.6 – – – 

Acceleration and strain 3.7 3.6 3.3 2.8 5.8 5.6 5.9 4.9 – – – – 8.1 8.6 5.5 

Acceleration, displacement, 
and strain 3.7 3.5 3.2 2.6 4.8 4.6 4.9 3.7 1.4 1.4 0.6 0.6 1.9 2.4 1.0 
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10.3.4. Estimation of unknown modeling parameters in the case of known input 

excitation 

In this section is assumed that the input excitation is known and only the 

modeling parameters are estimated using the UKF as originally proposed by Astroza et 

al. (2014). The same level of output measurement noises as considered in Section 10.3.3 

are used here. Cases of acceleration–only, acceleration+displacement, 

acceleration+strain, and acceleration+displacement+strain using the same sensor arrays 

are considered for comparison purposes. Figure 10.15 shows the time histories of the 

normalized a posteriori estimates of the modeling parameters for three instrumentation 

arrays. It is observed that the modeling parameters converge to their true values in all 

cases. Table 10.11 summarizes the final estimated of the modeling parameters in the case 

of known input excitation. For all instrumentation arrays, estimation of  colE , beamE , colf , 

and beamf  is excellent, however, even in the case of known input excitation estimation of 

colb  and beamb  (post-yield parameters) exhibits small relative errors. In the case of 

acceleration–only measurements, estimation of post-yield parameters has relative errors 

of 3%. These errors decrease as heterogeneous sensors arrays are considered, which is in 

agreement with the results obtained by Astroza et al. (2015) for a three-dimensional 

reinforced concrete (RC) building. By comparing these results with those obtained in 

Section 10.3.3, it can be concluded that the methodology to updated nonlinear FE model 

subjected to unknown input has an excellent performance in terms of accuracy, and 

robustness, with results comparable to those achieved when the input excitation is known. 
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Figure 10.15: Time history of the a posteriori estimates of the modeling parameters of 
the steel frame in the case of known input and noisy heterogeneous output response 
measurements. 

Table 10.11: Final estimates of the modeling parameters of the steel frame in the case of 
known input and noisy heterogeneous output response measurements. 

Type of response 
measurement 

Modeling parameter 
col
true
col

E
E

 col
true

col

f
f

 col
true
col

b
b

 beam
true
beam

E
E

 beam
true

beam

f
f

 beam
true
beam

b
b

 

Acceleration–only 1.00 1.00 1.03 1.00 1.00 1.03 

Acceleration and displacement 1.00 1.00 1.01 1.00 1.00 1.00 

Acceleration and strain 1.00 1.00 1.01 1.00 1.00 1.00 
Acceleration, displacement, 

and strain 1.00 1.00 1.01 1.00 1.00 1.00 

10.3.5. Modeling parameter sensitivity 

In order to analyze the sensitivity of the different output response measurements 

considered (accelerations, displacements, and strains) with respect to the six modeling 



www.manaraa.com

439 
 

parameters to be estimated (jointly with the unknown input excitations), Figure 10.16 

shows the envelopes of three response quantities (acceleration at level 5 in longitudinal 

direction 5la , displacement at level 5 in longitudinal direction 5ld , and strain of a corner 

steel fiber at the bottom of a column cε  – section 1−1 in Figure 10.3a) when the modeling 

parameters take values of 0.5, 1.0, and 2.0 times their true values. It is observed that 

acceleration and displacement responses are very sensitive to col col beamE , f ,E ,  and beamf , 

because variation in these modeling parameters induce significant variation in those 

responses. Contrarily, acceleration responses are almost insensitive with respect to colb  

and beamb , since variation in these modeling parameters induce negligible changes in 

those responses. However, displacement responses show sensitivity with respect to colb  

and beamb  around the largest displacement demand imposed by the earthquake excitation 

in the longitudinal direction (~3.0 sec). This time instant matches the time at which the 

post-yield parameters start to update (see Figure 10.10 and Figure 10.15). In the case of 

strain response measurements, they are sensitive to all modeling parameters. In particular, 

strain measured in a corner fiber at the bottom of a column (Figure 10.16) is sensitive to 

all modeling parameters except beamb . Similarly, strains measured in corner fibers at the 

end of beams (sections 2−2 and 3−3 in Figure 10.3a) are sensitive to all modeling 

parameters except colb . It is noteworthy that the fifteen output response measurements 

(eight accelerations, four displacements, and three strains) were analyzed and all the 

results are consistent with those discussed above, however, results for only three output 

response measurements are shown here due to space limitations. 
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Figure 10.16: Sensitivities of output response quantities of the steel frame with respect to 
modeling parameters. (a) Roof longitudinal acceleration, (b) Roof longitudinal 
displacement, (c) Strain in a corner steel fiber at the base of a column (section 1−1 in 
Figure 10.3a). Blue line: true response. Green area: envelope of responses for 
0.5 ,1.0 ,true trueθ θ  and 2.0 trueθ . 

10.4. Numerical application 2: 3D RC frame 

10.4.1. Finite element model and earthquake input excitation 

The second application example consists of the 3D 5-story 2-by-1 bay RC frame 

building presented in Chapter 9 of this dissertation. Details of design, FE model, and 

characteristics of the building can be found in Section 9.5.1. 

The same procedure as described in Section 10.3.1. is followed. First, the 

nonlinear seismic response of the structure is simulated using the nonlinear FE model 
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with fiber beam-column elements. In this application example, only the strong motion 

portions of translation components 360° and 90° of ground acceleration recorded at the 

Sylmar County Hospital during the 1994 Northridge earthquake are considered as base 

excitation in the longitudinal and transverse direction of the building, respectively (Figure 

10.17). The same sampling rate (50 Hz) and PGAs (0.84g and 0.60g) as described in 

Section 10.3.1 are still valid for the input excitation used in the second application 

example. 

 

Figure 10.17: Acceleration time history of the input seismic motion for the 3D RC 
frame. 

10.4.2. Response simulation 

The true modeling parameter vector of the RC frame is 

9 1, , , , , , , ,
Ttrue true true true true true true true true true

s col y col col s beam y beam beam c c cE f b E f b E f ×
− − − − = ∈ θ ε , 200true

s colE GPa− = , 

517true
y colf MPa− = , 0.01true

colb = , 200true
s beamE GPa− = , 414true

y beamf MPa− = , 0.05true
beamb = , 

27600true
cE MPa= , 40true

cf MPa= , and 0.0035true
cε = . The FE model described in 

Section 9.5.1. with the true modeling parameters’ values ( trueθ ) is used to simulate the 
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response of the RC building to the ground acceleration time histories shown in Figure 

10.17 (true response). 

10.4.3. Estimation of modeling parameters and unknown input 

The true (simulated) responses of the structure are polluted by AWGN and used 

as output response measurements in the estimation phase. Here, three cases of 

heterogeneous response measurements are considered. First, absolute acceleration-only 

response time histories in both translational directions at 3rd, 5th, and roof floors of the 

building are considered. Second, relative displacement response time histories in both 

translational directions at the 4th and roof levels are considered in addition to acceleration 

responses of previous case. Third, strain response time histories of reinforcing steel and 

cover concrete at the bottom of a corner column and end of a longitudinal beam are 

assumed to be recorded in addition to absolute accelerations and relative displacements 

described above. The location of the accelerometers, GPS, and strain gauges used to 

measured different output response quantities are shown by blue arrows, green circles, 

and red lines, respectively, in Figure 10.18. 

Both translational components of ground acceleration time histories used as input 

excitation and the nine modeling parameters describing the constitutive laws of 

reinforcing steel and concrete fibers in beams and columns are considered as unknown in 

the estimation phase. Nine material parameters define the unknown modeling parameter 

vector 9 1, , , , , , , , ×
− − − − = ∈  

T
s col y col col s beam y beam beam c c cE f b E f b E f εθ  and the unknown input 

ground acceleration time histories define the unknown input 2 300
1:300

×∈s  . Note that in 
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this application example 2sn =  and 300N = . As in application example 1, model 

uncertainty is not accounted for. 

 

Figure 10.18: RC frame building. Blue arrows indicate acceleration measurements, 
Green circles indicate displacement measurements, and Red lines indicate location of 
strain measurements. 

After completion of the structural response simulation, zero-mean AWGN is used 

to pollute the true responses. Noises with RMS amplitudes of 0.5%g, 2.0 mm , and 

0.5 mm m  are added to the true absolute acceleration, relative displacement, and strain 

responses, respectively. As abovementioned, based on the characteristics of sensors 

currently used in earthquake engineering, these levels of noise are slightly higher than 

those expected in real-world applications. In the estimation phase, zero-mean and 

standard deviation (or RMS) of 0.3%g, 1.5 mm , and 0.3 mm m  are considered to 

4 m 
(typ)
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construct the covariance matrix of the output measurement noise of absolute acceleration, 

relative displacement, and strain response quantities, respectively. 

Time-invariant second order statistics with zero-mean and covariance matrix 

n nx x
k

×= ∈Q Q  , where ( ) ( )min 1, 9 2min 1,x sn n n k L k Lθ= + + = + + , are assumed for 

the process noise kγ . The diagonal entries of Q  are assumed equal to 2
0|0ˆ( )× iq x  where 

1, , xi n=  and 51 10q −= × , i.e., the process noise covariance matrix is constructed 

assuming a coefficient of variation of 51 10−×  of the initial estimate of the modeling 

parameters and unknown input excitations. 

The initial unknown augmented vector is equal to 11 1
0|0 0|0 0|0,ˆ ˆˆ

TT T × = ∈ x θ s  . For 

the modeling parameters ( θ̂ ), the initial estimate is assumed as 

0|0
ˆ 0.7 ,1.3 ,1.25 ,1.3 ,0.8 ,0.75 ,1.2 ,0.85 ,0.9

Ttrue true true true true true true true true
s col y col col s beam y beam beam c c cE f b E f b E f− − − − =  θ ε . 

For the unknown input excitations, the initial estimate is assumed equal to 

  2 1
0|0

ˆ 0.01,0.01 Ts 

  . The initial estimate of the covariance matrix 0|0
ˆ xxP  is assumed to 

be diagonal. The terms related to the modeling parameters and to the unknown input 

excitation are computed assuming a coefficient of variation of 10% of the initial estimate 

of the mean 0|0x̂ , i.e., the diagonal entries of 0|0
ˆ xxP  are computed as 2

0|0ˆ( )ip x×  where 

1, , xi n=   and 0.10p = . As in application example 1, at time step  1k   the a priori 

standard deviation of the last sn  components of x  (which corresponds to unknown input 

excitation at that time step, 1
1

k
k
+
+s ), are taken equal to 2

|
ˆ( )k

k kp×s , while other components 
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of 1
ˆ

k+ |k
xxP  are obtained from the corresponding elements of the a posteriori covariance at 

previous time step ( ˆ
k|k
xxP ). All the variables involved in the estimation have comparable 

amplitudes, because the modeling parameters are normalized by their corresponding true 

values and the acceleration time histories are in the unit of m/s2. 

Using the framework shown in Figure 10.1, the unknown modeling parameters 

and the time history of both unknown input excitations are estimated. The number of SPs 

required at each time step is ( )2 1 2 9 2min 1, 1xn k L+ = × + + +   . This means that 

( )19 4min 1,k L+ +    nonlinear FE models (one for each SP) need to be run when 

estimating the modeling parameters and input excitations at time step . Only the 

value 30L =  is considered for the memory factor in this application example. 

Figure 10.19 shows the time history of the estimates obtained with the noisy 

output response measurements and L=30. Table 10.12 reports the final estimates of the 

modeling parameters, |
ˆ

N Nθ , normalized by their corresponding true parameter values for 

the different cases of response measurements. In all cases, excellent estimation results are 

obtained for stiffness-related modeling parameters ( s colE − , s beamE − , and cE ), parameters 

related to yield of reinforcing steel ( y colf −  and y beamf − ), post-yield parameter of 

reinforcing steel in beams ( beamb ). For these modeling parameters relative errors between 

estimated and true values less than or equal to 3% are obtained. Moreover, the additional 

information contained in the displacement and strain responses for modeling parameters 

colb , cf , and cε  compared to the case of acceleration-only response measurements is 

 1k 
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clearly observed. The estimation of these three modeling parameters improves 

significantly as displacement and strain response measurements are considered. 

 

Figure 10.19: Time history of the a posteriori estimates of the modeling parameters of 
the RC frame in the case of noisy output response measurements with L=30. 

Table 10.12: Final estimates of the modeling parameters of the RC frame in the case of 
noisy output response measurements with L=30. 

Type of response 
measurement 

Modeling parameter 

s col
true
s col

E
E

−

−

 y col
true
y col

f
f

−

−

 col
true
col

b
b

 s beam
true
s beam

E
E

−

−

 y beam
true
y beam

f
f

−

−

 beam
true
beam

b
b

 c
true
c

E
E

 c
true

c

f
f

 c
true
c

ε
ε

 

Acceleration 1.01 0.98 1.15 1.00 0.98 1.01 1.01 0.93 0.95 

Acceleration and 
displacement 1.00 0.99 1.22 1.00 0.99 1.03 1.01 0.95 0.92 

Acceleration, 
displacement, 

and strain 
1.00 1.00 0.99 1.00 1.00 0.99 1.00 1.00 0.97 

Figure 10.20 shows the time histories of the true and estimated (unfiltered) input 

excitations (i.e., both translational components recorded at the Sylmar station during the 

1994 Northridge earthquake) in the case of noisy acceleration-only output response 

measurements with L=30. Table 10.13 summarizes the RRMSE between the true and 
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estimated input excitations (unfiltered) for the different cases of response measurements. 

The estimated input excitations are very accurate for both components, with RRMSE 

lower than 3%. Contrary to the results obtained for the steel frame, where a spurious low-

frequency component appears in the estimation after the strong motion part of the input 

excitation, no spurious low frequency component is detected in the estimated input with 

acceleration-only output response measurements. This is because in the case of the RC 

frame, only the strong motion part of the excitation is considered. 

 
Figure 10.20: Comparison of the true and estimated input time histories to the RC frame 
in the case of noisy acceleration-only output response measurements with L=30. 

Table 10.13: RRMSEs (in %) between the true and estimated (unfiltered) input excitation 
to the RC frame in the case of noisy output response measurements with L=30. 

Type of response measurement 
RRMSE (%) – Input excitation 

(unfiltered) 
Sylmar 360° Sylmar 90° 

Acceleration 2.4 2.6 

Acceleration and displacement 1.6 2.1 

Acceleration, displacement, and strain 1.3 1.8 

Table 10.14 presents the RRMSE between the true and estimated (computed using 

the final estimates of the modeling parameters and the unfiltered estimated input 

excitations) output response measurements. In this table, ija  and ijd  stand for the 
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absolute acceleration and relative displacement time history response at level i  in 

direction j , respectively, where l = longitudinal and t = transverse directions, and i j−ε  

denotes the strain time history measured in the corner fiber of the cross-section of 

member element i  (where c = column and bx = longitudinal beam) and material j  

(where s = reinforcing steel and c = concrete). The location of the output response 

measurements are shown in Figure 10.18. An excellent agreement between true and 

estimated response is observed, with RRMSEs lower than or equal to 2.1%. 

Table 10.14: RRMSEs (in %) between the true response and the estimated response of 
the RC frame based on the final estimate of the modeling parameters and the estimated 
input excitation in the case of noisy output response measurements with L=30. 

Type of response 
measurement 

RRMSE (%) – Output response measurement 

3la  5la  6la  3ta  5ta  6ta  4ld  6ld  4td  6td  c s−ε  c c−ε  bx s−ε
 bx c−ε  

Acceleration 1.7 2.0 1.5 1.6 2.1 1.8 – – – – – – – – 

Acceleration and 
displacement 1.6 1.4 1.0 1.2 1.6 1.3 0.0 0.0 0.2 0.2 – – – – 

Acceleration, 
displacement, and strain 1.0 1.1 0.9 0.9 1.3 1.0 0.0 0.0 0.2 0.2 0.2 0.2 0.4 0.5 

10.5. Conclusions 

This chapter proposed and verified a methodology to update mechanics-based 

nonlinear structural FE models subjected to unknown input excitation. The framework 

uses recorded output response data to estimate unknown modeling parameters of the FE 

model and unknown input excitation using the UKF as estimation tool. The updated FE 

model and the estimated input excitation allow to accurately evaluate the state of damage 

of the structure, including loss of stiffness, strength degradation, and ductility capacity. 
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The performance of the methodology was analyzed in terms of convergence, 

accuracy, robustness, and computational cost using numerically simulated response data 

of realistic three-dimensional building structures, including a 4-story 2-by-1 bay steel 

frame building and a 5-story 2-by-1 bay reinforced concrete (RC) frame building, both 

subjected to bi-directional earthquake excitation. Six and nine modeling parameters for 

the steel and RC buildings, respectively, characterizing the nonlinear material constitutive 

models and samples of both input acceleration time histories were successfully estimated 

when limited response data were recorded. The use of heterogeneous sensor arrays, 

including acceleration, displacement, and strain measurements, was investigated and its 

effects on the estimation results were highlighted. It was observed that the use of 

heterogeneous sensor arrays improves considerably the accuracy of the estimation results, 

especially for post-yield material parameters. 

When noisy acceleration-only output response measurements were considered, 

the estimation of the input excitations after the strong motion part contained a permanent 

drift due to a spurious low-frequency component, which does not affect the absolute 

acceleration response measurements. This spurious low-frequency component is 

eliminated using a high-pass filter. When displacement response measurements were 

considered, the spurious components in the estimated input excitations were 

automatically eliminated because displacement responses are sensitive to long-period 

force excitations. 

Different true and estimated unobserved global and local response quantities were 

compared and they were found to be in very good agreement. This further confirms the 
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excellent performance of the proposed methodology and its capabilities for damage 

identification at different resolution levels, from global to the local levels. 

10.6. Acknowledgements 

Part of Chapter 10 is a reprint of the material that is currently being prepared for 

submission for publication “Bayesian nonlinear structural FE model updating for damage 

identification of civil structures subjected to unknown inputs” in Structural Safety, 

Astroza, Rodrigo; Ebrahimian, H.; and Conte, J.P. The dissertation author was the 

primary investigator and author of this paper. 



www.manaraa.com

451 
 

References 

Al-Hussein, A. and  Haldar, A. (2015a). “Novel unscented Kalman filter for health 
assessment of structural systems with unknown input.” Journal of Engineering 
Mechanics ASCE, 10.1061/(ASCE)EM.1943-7889.0000926, 04015012. 

 
Al-Hussein, A. and  Haldar, A. (2015b). “Unscented Kalman filter with unknown input 

and weighted global iteration for health assessment of large structural systems.” 
Structural Control and Health Monitoring, In Press. 

 
Astroza, R., Ebrahimian, H., and Conte, J. P. (2014). “Material parameter identification 

in distributed plasticity FE models of frame-type structures using nonlinear stochastic 
filtering.” Journal of Engineering Mechanics ASCE, In press. 

 
Astroza, R., Ebrahimian, H., and Conte. J.P. (2015). “Nonlinear system identification for 

health monitoring of civil structures.” To be submitted to Computers and Structures. 
 
Chen, J. and Li, J. (2004). “Simultaneous identification of structural parameters and input 

time history from output-only measurements” Computational Mechanics, 33(5), 365-
374. 

 
Ching, J., Beck, J. L., Porter, K. A., and Shaikhutdinov, R. (2006). “Bayesian state 

estimation method for nonlinear systems and its application to recorded seismic 
response.” Journal of Engineering Mechanics ASCE, 132 (4), 396–410. 

 
Distefano, N. and Pena-Pardo, B. (1976). “System identification of frames under seismic 

loads.” Journal of the Engineering Mechanics Division, 102(EM2), 313–330. 
 
Ebrahimian, H., Astroza, R., and Conte, J. P. (2015). “Extended Kalman filter for 

material parameter estimation in nonlinear structural finite element models using 
direct differentiation method.” Earthquake Engineering & Structural Dynamics, In 
press. 

 
Ebrahimian, H., Astroza, R., Conte, J.P., Restrepo, J.I, and Hutchinson, T.C. (2014). 

“Experimental validation of dynamic nonlinear FE model of full-scale five-story 
reinforced concrete building.” Ninth International Conference on Structural 
Dynamics (EURODYN 2014), Porto, Portugal. 

 
Eftekhar Azam, S., Chatzi, E., and Papadimitriou, C. (2015). “A dual Kalman filter 

approach for state estimation via output-only acceleration measurements.” 
Mechanical Systems and Signal Processing, In press. 

 
Filippou, F.C., and Fenves, G.L. (2004). “Methods of analysis for earthquake-resistant 

structures.” Chapter 6, Earthquake engineering: From engineering seismology to 
performance-based engineering, CRC Press, Boca Raton, FL. 



www.manaraa.com

452 
 

 
Filippou, F.C., Popov, E.P., and Bertero, V.V. (1983). “Effects of bond deterioration on 

hysteretic behavior of reinforced concrete joints.” Report EERC 83–19, Earthquake 
Engineering Research Center (EERC), University of California, Berkeley. 

 
Hsieh, C.S. (2011). “Optimal filtering for systems with unknown inputs via the descriptor 

Kalman filtering method.” Automatica, 47(10), 2313–2318. 
 
Huang, H., Yang, J.N., and Zhou, L. (2010). “Adaptive quadratic sum-squares error for 

structural damage identification.” Journal of Engineering Mechanics ASCE, 135(2), 
67–77. 

 
Huang, H., Yang, J.N., and Zhou, L. (2010). “Adaptive quadratic sum-squares error with 

unknown inputs for damage identification of structures” Structural Control and 
Health Monitoring, 17(4), 404–426. 

 
International Code Council (ICC). (2006). International Building Code. Falls Church, 

VA. 
 
Julier, S.J. and Uhlmann, J.K. (1997). “A new extension of the Kalman filter to nonlinear 

systems.” The 11th International Symposium on Aerospace/Defense Sensing, 
Simulation and Controls, Orlando, FL. 

 
Kitanidis, P.K. (1987). “Unbiased minimum-variance linear state estimation.” 

Automatica, 23(6), 775–778. 
 
Liu, P. and Au, S-K. (2013). “Bayesian parameter identification of hysteretic behavior of 

composite walls.” Probabilistic Engineering Mechanics, 34, 101–109. 
 
Lourens, E., Papadimitriou, C., Gillinjs, S., Reynders, E., De Roeck, G., and Lombaert, 

G. (2012). “Joint input-response estimation for structural systems based on reduced-
order models and vibration data from a limited number of sensors.” Mechanical 
Systems and Signal Processing, 29, 310–327. 

 
Martinelli, P. and Filippou, F.C. (2009). “Simulation of the shaking table test of a seven-

story shear wall building.” Earthquake Engineering and Structural Dynamics, 38(5), 
587–607. 

 
Mazzoni, S., McKenna, F., and Fenves, G.L. (2005). Opensees command language 

manual. http://opensees.berkeley.edu/. Pacific Earthquake Engineering Research. 
 
Mottershead, J.E. and Friswell, M.I. (1993). “Model updating in structural dynamics: A 

survey.” Journal of Sound and Vibration, 167(2), 347–375. 
 



www.manaraa.com

453 
 

Naets, F., Cuadrado, J., and Desmet, W. (2015). “Stable force identification in structural 
dynamics using Kalman filtering and dummy-measurements.” Mechanical Systems 
and Signal Processing, 50-51, 235–248. 

 
Omrani, R., Hudson, R., and Taciroglu, E. (2013). “Parametric identification of non-

degrading hysteresis in a laterally-torsionally coupled building using an unscented 
Kalman filter.” Journal of Engineering Mechanics ASCE, 139(4), 452–468. 

 
Radhika, B and Manohar, CS. (2013). “Dynamic state estimation for identifying 

earthquake support motions in instrumented structures.”  Earthquakes and Structures, 
5 (3), 359-378. 

 
Ren, W. X., and De Roeck, G. (2002). “Structural damage identification using modal 

data. II: Test verification.” Journal of Structural Engineering ASCE, 128(1), 96–104. 
 
Ribeiro, F., Barbosa, A., Scott, M., and Neves, L. (2014). “Deterioration modeling of 

steel moment resisting frames using finite-length plastic hinge force-based beam-
column elements.” Journal of Structural Engineering ASCE, In Press. 

 
Simoen, E., Moaveni, B., Conte, J.P., and Lombaert, G. (2013). “Uncertainty 

quantification in the assessment of progressive damage in a seven-story full-scale 
building slice.” Journal of Engineering Mechanics ASCE, 139(12), 1818–1830. 

 
Sun, H. and Betti, R. (2013). “Simultaneous identification of structural parameters and 

dynamic input with incomplete output-only measurements” Structural Control and 
Health Monitoring, 21(6), 868–889. 

 
Taucer, F.F., Spacone, E., and Filippou, F.C. (1991). “A fiber beam-column element for 

seismic response analysis of reinforced concrete structures.” Report 91/17, EERC, 
Earthquake Engineering Research Center (EERC), University of California, 
Berkeley. 

 
Teughels, A. and De Roeck, G. (2004). “Structural damage identification of the highway 

bridge Z24 by FE model updating.” Journal of Sound and Vibration, 278 (3), 589–
610. 

 
Uriz, P., Filippou, F., and Mahin, S. (2008). “Model for cyclic inelastic buckling of steel 

braces.” Journal of Structural Engineering ASCE, 134(4), 619–628. 
 
Wan, E.A. and van der Merwe, R. (2000). “The unscented Kalman filter for nonlinear 

estimation.” IEEE 2000 Adaptive Systems for Signal Processing, Communications, 
and Control Symposium, Lake Louise, AB, Canada. 

 
Wang, D. and Haldar, A. (1997). “System identification with limited observations and 

without input”. Journal of Engineering Mechanics ASCE, 123(5), 504-511. 



www.manaraa.com

454 
 

 
Yang, J.N. and Huang, H. (2007). “Sequential non-linear least-square estimation for 

damage identification of structures with unknown inputs and unknown outputs” 
International Journal of Non-Linear Mechanics, 42(5), 789–801. 

 
Yang, J.N., Pan, S., and Huang, H. (2006). “An adaptive extended Kalman filter for 

structural damage identifications II: Unknown inputs.” Structural Control and Health 
Monitoring, 14(3), 497–521. 

 
Zhang, K., Li, H., Duan, Z., and Law, S.S. (2011). “A probabilistic damage identification 

approach for structures with uncertainties under unknown input.” Mechanical Systems 
and Signal Processing, 25(4), 1126–1145. 

 

 

 

 

 

 



www.manaraa.com

CHAPTER 11 

CONCLUDING REMARKS 

11.1. Summary of the dissertation 

This dissertation presents linear and nonlinear system and damage identification 

studies on civil structures. First, system identification (SID) of a linear elastic viscously 

damped model of a full-scale five-story reinforced concrete (RC) building built and tested 

on the NEES@UCSD shake table is conducted. Five different state-of-the-art methods of 

SID, including output-only and input-output methods, are used to estimate the modal 

properties (natural frequencies, damping ratios, and mode shapes) of the building and the 

SID results obtained are compared. Evolution of the modal properties during the 

construction process and effects of nonstructural components and systems (NCSs), 

amplitude of the excitation, environmental conditions, isolation system, and structural 

and nonstructural damage on the identified dynamic characteristics are investigated. 

Second, new frameworks for system and damage identification of nonlinear structural 

systems are developed and validated through numerical simulation. The proposed 

frameworks integrate high-fidelity mechanics-based nonlinear finite element (FE) 

structural modeling and analysis with Bayesian inference methods. The methodologies 
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can be employed for rapid damage identification (detection, localization, classification, 

and assessment) of civil structures. 

11.2. Summary of major findings and novel contributions 

The research work presented in this dissertation contributes to the research areas 

of: (1) system identification of full-scale structures with real-world complexities using 

input-output and output-only SID methods based on dynamic test data; (2) damage 

identification of real-world structures subjected to progressive damage induced by a 

realistic source of dynamic excitation based on the modal parameters identified from 

dynamic test data; (3) investigation of the effects of the construction process,  

nonstructural components and systems (NCSs), amplitude of the excitation, and changing 

environmental conditions on the identified modal parameters; (4) nonlinear system and 

damage identification of civil structures; (5) mechanics-based nonlinear finite element 

(FE) model updating for damage identification of civil structures. 

The main contributions and major findings of this dissertation are summarized as 

follows: 

1. The evolution of the modal properties (natural frequencies, damping ratios, 

and mode shapes) of a full-scale five-story RC building (BNCS building) 

during the construction process and placement of major NCSs was 

investigated. A sequence of dynamic tests was performed on the building, 

including ambient vibrations (AVs) that were recorded daily and shock (free 

vibration) and forced vibration tests (low-amplitude white noise and seismic 

base excitations) that were conducted at different stages of construction. 
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Different state-of-the-art SID methods, including three output-only and two 

input-output methods, were used to estimate the modal properties of the 

building. The results obtained allowed to investigate in detail the effects of the 

construction process and NCSs on the dynamic parameters of this building 

system and to compare the modal properties identified from different 

methods, as well as the performance of these methods. It was found that 

placement of the concrete to build the main structural elements (slabs, 

columns, and walls) reduces the natural frequencies because of the additional 

mass (without stiffness contribution) incorporated to the structure. The effect 

of concrete hardening and corresponding stiffness gain during the curing 

process was detected through gradual increase in the natural frequencies. 

Some NCSs had a significant effect on the identified natural frequencies and 

damping ratios of the building. The precast cladding induced abrupt 

reductions in the natural frequencies due to their significant mass (without 

significant stiffness) added to the building. The interior partition walls 

increased significantly the initial lateral stiffness of the building and 

consequently decreased its natural frequencies. Furthermore, they slightly 

increased the identified damping ratios of the building. The installation of the 

NCSs decreased the natural frequency (identified from ambient vibration data) 

of some modes (by up to 9%) and increased that of others (by up to 18%), 

while the identified damping ratios increased by 15 to 191% for all the modes 

from the bare building structure to the complete building, due to the additional 

sources of energy dissipation provided by the NCSs themselves and their 
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interaction with the structural frame. Using the white noise (WN) base 

excitation test data, the effect of cracking in the concrete and corresponding 

loss of stiffness during the WN tests performed on both the bare structure and 

the complete building was clearly observed from the natural frequencies 

identified. It was observed that the low amplitude of structural vibration 

induced by AV was not sufficient to exercise (re-open) the majority of the 

cracks developed during the WN base excitation tests performed and, 

therefore, to identify the corresponding loss of stiffness of the structure. 

2. Using vibration data recorded from the BNCS building while fixed at its base, 

a comprehensive comparative study of five state-of-the-art system 

identification methods was conducted. The building fixed at its base was 

tested on the NEES@UCSD shake table and subjected to a sequence of 

earthquake motions selected to progressively damage the structure and NCSs. 

Between seismic tests, AV response was recorded. Additionally, low-

amplitude WN base excitation tests were conducted at key stages during the 

test protocol. Using the vibration data recorded, five state-of-the-art SID 

methods are employed to estimate the modal properties of an equivalent linear 

elastic viscously-damped time-invariant model of the building at different 

levels of damage and the results obtained are compared. The results showed 

that modal properties identified from different methods are in good agreement 

and that the estimated modal parameters are affected by the amplitude of the 

excitation and the level of structural/nonstructural damage. The natural 

frequencies and mode shapes identified by different methods were found in 
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very good and good agreement, respectively, whereas the identified damping 

ratios show much larger method-to-method variability than the natural 

frequencies and mode shapes. Detailed visual inspections of the damage 

conducted between the seismic tests permitted to correlate the identified 

modal parameters and global and story-level responses of the building with 

the actual level of damage. Distribution of damage over the height of the 

building observed from visual inspections was found in good agreement with 

the loss of apparent story stiffness inferred from the recorded floor 

acceleration data. Using the WN base excitation test data, the ratio between 

the natural frequencies of the building in its damage states (after the first WN 

test) and its reference state (first WN test) was computed from the apparent 

global structural stiffnesses and from the identified natural frequencies of the 

longitudinal modes of the building. The ratio obtained from the apparent 

global structural stiffnesses was found in excellent agreement with the ratio of 

the identified natural frequency of the first longitudinal mode (1-L), 

suggesting that the global response of the building (total base shear versus 

roof drift) during the low-amplitude WN base excitation tests was dominated 

by mode 1-L. Identified natural frequencies of other modes (2-L to 5-L) also 

decreased as damage progressed, but less (in relative terms) than that of mode 

1-L. The modal contributions to the absolute acceleration response were also 

studied. As the damage in the building progressed, the relative contributions 

of the higher modes (2-L, 3-L, and 4-L) increased drastically as compared to 
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the reference state of the building (DS0), whereas the relative contribution of 

the fundamental mode (1-L) decreased considerably. 

3. Using vibration data recorded in the BNCS building isolated at its base, the 

effects of the isolation system in elongating the predominant period of the 

building, concentrating the deformation in the isolation layer, and augmenting 

the energy dissipation capacity of the system were investigated. For the base 

isolated (BI) configuration of the building, a sequence of seven seismic tests 

was designed and applied to the BNCS building to progressively increase the 

seismic demand on the structure and NCSs. The effectiveness of the isolation 

in reducing the floor acceleration and interstory drift demands was 

demonstrated. The dependency of the secant stiffness and effective damping 

ratio on the shear deformation in the isolators was investigated using data 

from quality control (component), WN base excitation, and seismic tests. 

Before and after each seismic test, low-amplitude WN base excitation tests 

with three different nominal amplitudes were carried out and AV data were 

recorded continuously for approximately sixteen days. Because of the low 

intensity of these excitations, a quasi-linear response of the system was 

assumed and the modal parameters of an equivalent viscously-damped linear 

elastic time invariant model were estimated using vibration data recorded 

during AV and WN tests. Using the structural vibration data recorded by 

twenty six accelerometers, five system identification methods, including three 

output-only (SSI-DATA, NExT-ERA, and EFDD) and two input-output 

(OKID-ERA and DSI), were used to estimate the modal properties of the 



www.manaraa.com

461 
 

base-isolated building. An automated SID process using the SSI-DATA and 

NExT-ERA methods and based on the stabilization diagram was applied to 

the continuously-recorded AV data to identify the modal properties of the BI 

building under small amplitude excitations. Eight dominant modes were 

identified using the AV data, with the first three corresponding mainly to the 

deformation of the isolation layer, i.e., isolation modes, and the higher modes 

corresponding to structural modes mostly involving deformation of the 

superstructure. With the WN base excitation test data, ten modes were 

identified, with the first three corresponding to the isolation modes. Results 

show that the identified modal parameters obtained by different methods are 

in good agreement and that the natural frequencies and damping ratios have 

the lowest and highest method-to-method variability, respectively. Natural 

frequencies of the isolation modes identified with WN test data are larger than 

those identified using AV data because of the reduction of the effective lateral 

stiffness of the isolation layer. However, the differences between natural 

frequencies of structural modes identified from WN and AV data were much 

smaller, suggesting that the structure itself experienced a linear elastic 

response during the WN tests. Damping ratios of the isolation modes were 

considerably higher than those of the structural modes, especially when 

identified from the WN test data. This is because more intense excitations 

induced larger deformations in the isolators increasing the energy dissipated 

through hysteretic behavior of the bearings, which is identified as equivalent 

viscous damping because of the underlying mathematical model assumed by 
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the SID methods used. The identified damping ratios correlated well with the 

effective damping ratios computed from the hysteretic response of the 

bearings. The effects of the amplitude of the excitation, seismic excitations, 

and environmental conditions (wind speed and temperature) were clearly 

shown via the changes induced on the estimated modal parameters of the 

building. 

4. A comprehensive statistical analysis was performed on the identified modal 

properties of the BNCS building fixed at its base and at different damage 

states. Two state-of-the-art methods of operational modal analysis were used 

to automatically identify the modal properties of the fixed-base building at 

different damage states using AV data recorded continuously for about fifteen 

days. A statistical analysis of the identified modal parameters was performed 

to investigate the statistical variability and accuracy of the system 

identification results. The variability of the identified modal parameters due to 

environmental conditions was also investigated. 

5. A novel framework was proposed that combines high-fidelity mechanics-

based nonlinear (hysteretic) FE models and a nonlinear stochastic filtering 

method, referred to as the unscented Kalman filter, to estimate unknown 

material parameters in frame-type structures from input-output dynamic data. 

The identification framework updates nonlinear FE models using spatially-

limited noisy measurement data and it can be further used for damage 

identification (DID) purposes. The effectiveness, robustness, and accuracy of 

the framework were validated using numerically simulated data from realistic 
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nonlinear FE models of structures of increasing complexity: a cantilever steel 

column representing a bridge pier and a two-dimensional steel frame. Both 

structures were modeled using beam-column elements with distributed 

plasticity and are subjected to a suite of earthquake ground motions of varying 

intensity. The results indicated that the material parameters of the nonlinear 

finite element models are accurately estimated, provided that: (i) the loading 

intensity is sufficient to exercise the parts (branches) of the nonlinear material 

model which are governed by the material parameters to be identified, and (ii) 

the measured response quantities are sufficiently sensitive to the material 

parameters to be identified, especially when a limited number of 

measurements is considered. 

6. The framework for updating mechanics-based nonlinear FE models was 

extended and its performance and robustness were analyzed when limited 

response data from a realistic nonlinear FE model of a realistic three-

dimensional five-story two-by-one bay RC frame building subjected to bi-

directional horizontal earthquake excitation were available. Parameters 

characterizing the nonlinear material constitutive laws and Rayleigh damping 

characteristics of the FE model were successfully estimated when limited 

response data (6 acceleration time histories) were available. Excellent results 

were obtained for two different earthquake excitations and two initial 

estimates of the expected value of the modeling parameters. To alleviate the 

computational burden of the proposed methodology, three non-sequential 

updating approaches were presented and examined. The proposed non-
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sequential approaches reduced the computational cost by about 70−80% as 

compared to the sequential updating approach initially proposed. Accurate 

estimation results were achieved with cumulative innovation and time-

window approaches, while the non-cumulative approach required a small 

updating step parameter ( D ) to properly estimate the modeling parameters. 

The effects of using data from heterogeneous sensor arrays on the 

identifiability of the modeling parameters and updating of the nonlinear FE 

model were also investigated. Fusion of acceleration, displacement and strain 

response data improved considerable the accuracy of the parameter estimation 

results because sensitivity of different types of recorded responses to 

modeling parameters may vary significantly, and consequently, heterogeneous 

sensor data may be more informative than acceleration-only data. An adaptive 

filtering approach based on a covariance matching technique was proposed to 

estimate the measurement noise covariance in addition to the time-invariant 

modeling parameters. Favorable effects of the proposed adaptive filtering 

approach were observed, especially when the initial guesses of the standard 

deviations of the output measurement noises are far from the actual level of 

measurement noise and only acceleration outputs were recorded. Finally, 

effects of input measurement noise on the estimation results were studied. It 

was concluded that the proposed framework is very robust to input noise, 

achieving good estimation results even for unrealistically high levels of input 

measurement noise. 
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7. A comprehensive comparison of the performance of different Kalman-based 

filters for nonlinear structural FE model updating was conducted. The 

Extended Kalman filter (EKF), Unscented Kalman filter (UKF), and iterated 

Extended Kalman filter (IEKF) were studied and their performances in terms 

of convergence, accuracy, robustness, and computational requirements were 

investigated and compared. Numerically simulated response data from a three-

dimensional five-story two-by-one bay RC building subjected to bi-directional 

horizontal earthquake excitation were used for an application example. The 

FE response sensitivities with respect to eleven modeling parameter 

describing the nonlinear constitutive law of the materials (reinforcing steel 

and concrete) were analyzed. Based on the obtained results, only nine 

parameters were found to significantly influence the output measured 

response, and were therefore chosen as unknown parameters to be estimated. 

Excellent estimation results of these modeling parameters were obtained using 

the UKF, EKF, and IEKF. Because of the analytical linearization used in the 

EKF and IEKF, abrupt and large jumps in the estimates of the modeling 

parameters were observed when using these filters, which may lead to 

problems of convergence of the nonlinear FE response simulation. The UKF 

slightly outperformed the EKF and IEKF and prevents large and abrupt 

changes in the estimates of the modeling parameters because it does not use 

analytical linearization of the nonlinear FE model; however, the UKF has a 

slightly higher computational cost. The non-sequential estimation procedure 

previously proposed for the UKF was also implemented for the EKF and 
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IEKF. The capability of the non-sequential scheme to reduce the 

computational cost, while maintaining accurate and robust estimation results, 

was demonstrated. The non-sequential procedure alleviated the problems 

related to abrupt and large jumps in the estimates of the modeling parameters 

when using the EKF and IEKF. Because of its iterative nature, the IEKF 

outperformed the UKF and EKF when the non-sequential updating procedure 

was used, but at a higher computational cost. 

8. A methodology to update mechanics-based nonlinear structural FE models 

subjected to unknown input excitation was proposed. The approach allows to 

jointly estimate unknown time-invariant modeling parameters of a nonlinear 

FE model of the structure and the unknown time histories of input excitations 

using spatially-sparse output response measurements recorded during a 

damage-inducing earthquake event. The updated FE model and the estimated 

input excitation allowed to accurately evaluate the state of damage of the 

structure, including loss of stiffness, strength degradation, and loss of ductility 

capacity. The UKF, which avoids the computation of FE response sensitivities 

with respect to the unknown modeling parameters and the unknown input 

excitations, was employed as estimation tool. The performance of the 

methodology was analyzed in terms of convergence, accuracy, robustness, and 

computational cost using numerically simulated response data from a realistic 

nonlinear FE model of a realistic three-dimensional four-story two-by-one bay 

steel frame building with six unknown modeling parameters subjected to 

unknown bi-directional horizontal earthquake excitation and of a realistic 
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three-dimensional five-story two-by-one bay RC frame building with nine 

unknown modeling parameters subjected to unknown bi-directional horizontal 

earthquake excitation. The use of heterogeneous sensor arrays, including 

acceleration, displacement, and strain measurements was investigated. The 

results showed the excellent performance and robustness of the proposed 

algorithm to jointly estimate unknown modeling parameters and unknown 

input excitations. It was observed that the use of measurement data from a 

heterogeneous sensor array improves considerably the accuracy of the 

estimation results, especially for post-yield material parameters. When noisy 

acceleration-only output response measurements were considered, the 

estimation of the input excitations contained a permanent drift due to a 

spurious low-frequency component, which did not affect the absolute 

acceleration response measurements. This spurious low-frequency component 

can be artificially eliminated using a high-pass filter. When displacement 

response measurements were added to the acceleration response 

measurements, the spurious low frequency components in the estimated input 

excitations were automatically eliminated because displacement responses are 

sensitive to low-frequency dynamic excitations. 

11.3. Recommendations for future work 

Based on the research work performed and presented in this dissertation, several 

research topics have been identified and deserve further investigation in future work. 
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1. Quantification and propagation of uncertainty in the linear SID results of 

the BNCS building. 

2. Correlation between identified modal properties and measured 

environmental conditions. 

3. Separation of changes in modal properties due to structural damage and 

those due to other sources such as changes in environmental conditions. 

4. Deterministic and probabilistic (Bayesian) linear FE model updating of the 

BNCS building (fixed and isolated at its base) using the identified modal 

properties. 

5. Deterministic and probabilistic (Bayesian) linear FE model updating of the 

BNCS building (fixed and isolated at its base) using recorded response 

time histories 

6. Investigation of the effects of modeling errors on the methodologies 

proposed to update mechanics-based nonlinear FE models and extension 

of the framework to account for modeling errors. 

7. Validation of the proposed methodologies to update mechanics-based 

nonlinear FE models using experimental dynamic/quasi-static data 

recorded from large/full-scale physical specimens. 

8. Extension of the work presented in this dissertation for the purpose of 

damage prognosis. 
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APPENDIX A: STATE-SPACE MODELS FOR MULTIPLE-

INPUT MULTIPLE-OUTPUT DYNAMICAL SYSTEMS 

This appendix presents the formulation of state-space models for multiple-input 

multiple-output (MIMO) systems in structural dynamics. First the derivation of the state 

and measurements equations in continuous-time is introduced. Modal analysis of non-

proportionally damped systems and modal decomposition of continuous-time state-space 

models are then presented. The state-space model in discrete time is derived and its 

relationship with the continuous-time state-space model is studied. The expressions 

relating the modal properties of the structural system and the state-space matrices are 

revisited. State equations of MIMO problems are derived, including formulations for 

multiple support excitation and 2-D and 3-D shear buildings models with translational 

and rotational input excitations. Finally, a summary and flowcharts of the five state-of-

the-art system identification methods used in this chapter are presented. 

A.1.  Derivation of state and measurement equations in continuous-time 

The equation of dynamic equilibrium of a linear-elastic structure can be expressed 

as 

( ) ( ) ( ) ( )t t t t+ + =M q C q K q f   (A.1) 

469 
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where n n×∈M   = mass matrix, n n×∈C   = viscous-damping matrix, n n×∈K   = 

stiffness matrix, ( ) nt ∈f    = vector of external excitation,  ( ) nt ∈q   = vector of 

displacement response, ( ) nt ∈q    = vector of velocity response, and ( ) nt ∈q   = vector 

of acceleration response. 

Using the additional equation ( ) ( )t t− =Mq Mq 0  , the following extended 

version of the equation (A.1) can be written 

( ) ( ) ( )tt t
 

+ =  
 

f
P x Q x

0
  (A.2) 
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(A.3) 

Moreover, the external excitation can be written as a function of the input motion 

as 

( ) ( )t t=f Eu  (A.4) 

in which n m×∈E   = matrix defining the location of the inputs and ( ) mt ∈u   = inputs to 

the system (displacement, velocity, and/or acceleration). 

Then, from (A.2) and (A.4) the following expression is obtained, 
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( ) ( ) ( )t t t= +c cx A x B u  (A.5) 

where 

1 2 2
1 1

1 2
1

n n

n m

− ×
− −

− ×
−

 
= − = ∈ 

− − 
  

= = ∈  
   

c

c

0 I
A P Q

M K M C

0E
B P

0 M E





 (A.6) 

Equation (A.5) is known as the state equation and matrices cA  and cB  are the 

state (dynamical system matrix) and input matrices, respectively. 

Now, let’s consider 

( ) ( ) ( ) ( )t t t t= + +ac ve diy C q C q C q   (A.7) 

where ( ) lt ∈y   = measured outputs (observed responses) and , , l n×∈ac ve diC C C   = 

Boolean matrices indicating the position of the outputs. Pre-multiplying (A.1) by 

1 1− −
acC M  and using (A.4), 

( ) ( ) ( ) ( )1 1 1 1t t t t− − − −⇒ + + =ac ac ac acC M M q C M C q C M K q C M E u   

( ) ( ) ( ) ( )1 1 1t t t t− − −⇒ − − + =ac ac ac acC M K q C M C q C M E u C q   

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1 1 1t t t t t

t t t

− − −⇒ − + − + =

+ +
di ac ve ac ac

ac ve di

C q C M K q C q C M C q C M E u

C q C q C q
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( ) ( ) ( )t t t= +c cy C x D u  (A.8) 

where 

1 1 2l n− − × = − ⋅ − ∈ c di ac ve acC C C M K C C M C   

1 l m− ×= ∈c acD C M E   
(A.9) 

Equation (A.8) is known as the measurement equation and cC  and cD  are the 

output and direct feed-through matrices, respectively. 

Equations (A.5) and (A.8) define the state-space model of a multiple input - 

multiple output (MIMO) linear time-invariant system in continuous time, which is 

summarized in the following equation: 

( ) ( ) ( )
( ) ( ) ( )
t t t

t t t

= +


= +

c c

c c

x A x B u

y C x D u



 (A.10) 

A.2.  Modal analysis of non-proportionally damped systems 

From (A.2) and (A.4), 

( ) ( ) ( )t t t 
+ =  

 

E
P x Q x u

0
  (A.11) 

Let’s assume a solution for (A.1) of the form 

( ) ti
i

i
t G eλ=∑q Θ  and ( ) ti

i it G eλ=q Θ  (A.12) 

where iΘ  is the i -th eigenvector of the original second order equation (A.1). Then, 

( ) ( )i i it t= λq q  and ( ) ( )i i it t= λq q   (A.13) 
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Let’s define the matrix [ ]cΛ , which contains the 2n  complex eigenvalues of the 

system, as 

2 2n ni × λ= ∈  cΛ




  (A.14) 

and the vector iΨ  as 

i
i

i i

 
=  λ ⋅ 

Θ
Ψ

Θ
 (A.15) 

Using (A.15) and the definition of the state vector from (A.3), it is obtained that 

( ) ( )
( )

ti
ii ti

i itii i i

G et
t G e

t G e

λ
λ

λ

  
= = =  

λ    

Θq
x Ψ

q Θ

 (A.16) 

Replacing (A.16) in the homogeneous version of (A.11), for each i  the following 

expression can be written 

t ti i
i i iG e G eλ λλ + =P Ψ Q Ψ 0  (A.17) 

Then, 

+ =cP Ψ Λ Q Ψ 0  (A.18) 

where 2 2n n×∈Ψ   contains the complex eigenvectors in the columns of the matrix. 

Previous equation corresponds to a generalized eigenvalue problem, in which iΨ  is the 

eigenvector corresponding to the eigenvalue iλ . 

Since matrices P  and Q  are symmetric but are not positive-definite, the 

eigenvalues and eigenvectors come as complex conjugate pairs. Therefore, the 

eigenvalues and eigenvectors can be written in the form 
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=  
 

c *

Λ 0
Λ

0 Λ
 

 
=  
  

*

* *

Θ Θ

ΛΘ Λ Θ
Ψ  

(A.19) 

From the first equation of (A.18) and using (A.19), 

2 + + =M Θ Λ CΘ Λ K Θ 0  (A.20) 

Now, it is possible to prove the orthogonality property of the matrices P  and Q . 

Pre-multiplying (A.17) by T
jΨ , 

0T T
j i i j i

T T
j i i j i

⇒ λ + =

⇒ − λ ⋅ =

Ψ P Ψ Ψ Q Ψ

Ψ P Ψ Ψ Q Ψ
 (A.21) 

But, because of the symmetry ofQ  

( )TT
j i j j i⇒ − λ =Ψ P Ψ Q Ψ Ψ  (A.22) 

From (A.17), j j j− λ =P Ψ Q Ψ . Using this expression and (A.22), 

( )TT
j i i j j i

T T T
j i i j j i

T T
j i i j j i

⇒ − λ = − λ

⇒ λ = λ

⇒ λ = λ

Ψ P Ψ P Ψ Ψ

Ψ P Ψ Ψ P Ψ

Ψ P Ψ Ψ P Ψ

 

Using the symmetry of P  ( )( ) 0T
i j j i⇒ λ −λ =Ψ P Ψ  

(A.23) 

Then, if i j≠  

( ) 0T
j i =Ψ P Ψ  (A.24) 

The last equation proves the orthogonality property of the matrix P , which in 

matrix form can be written as 
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T ia =   
Ψ P Ψ





 (A.25) 

where T
i i ia =Ψ P Ψ  . 

A similar procedure can be follow for matrix Q . From (A.22) and considering the 

symmetry of P , 

( )T T
j i i j i− λ =P Ψ Ψ Ψ Q Ψ  (A.26) 

From (A.17), 1
j j

j
= −

λ
P Ψ Q Ψ  . Using this expression and (A.26), 

1

1

0

T
T

j i i j i
j

T T
j i i j i

j

T T Ti
j i j i

j

i j T
j i

j

 
⇒ − − λ =  λ 

⇒ λ =
λ

λ
⇒ =

λ

 λ −λ
⇒ =  λ 

Q Ψ Ψ Ψ Q Ψ

Ψ Q Ψ Ψ Q Ψ

Ψ Q Ψ Ψ Q Ψ

Ψ Q Ψ

 (A.27) 

Then, if i j≠ , 

( ) 0T
j i =Ψ Q Ψ  (A.28) 

The last equation proves the orthogonality property of the matrixQ , which can be 

written in matrix form as 

T ib =   
Ψ Q Ψ





 (A.29) 

where T
i i ib =Ψ Q Ψ . 

Replacing equation (A.25) and (A.29) in (A.18) pre-multiplied by TΨ  follows 
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1

T T

i i

ii i
i i

a b

bba a

⇒ + =

   ⇒ + =      
     λ⇒ = = − = −              

c

c

c

Ψ P Ψ Λ Ψ Q Ψ 0

Λ 0

Λ

 

 





 

 





 
(A.30) 

From (A.25), 

( )

( )

1 1

1 1 1

1 1

1 1

1

1

1

T i

T i

Ti

T
i

T
i

a

a

a

a

a

− −

− − −

− −

− −

−

 ⇒ =   
 ⇒ =  

 ⇒ =  
 

⇒ =  
 

 
⇒ =  

 

P Ψ Ψ

Ψ Ψ P I

Ψ P Ψ

Ψ P Ψ

P Ψ Ψ





















 
(A.31) 

From (A.29), 

( ) 1 1T ib− − ⇒ =   
Q Ψ Ψ





 (A.32) 

Replacing the last expression of (A.31) and (A.32) in (A.6), it is obtained 

( ) 11 1

1

1

1

1

T i
i

i
i

i
i

ba

ba

b
a

−− −

−

−

   ⇒ = − = − ⋅     
   ⇒ = −      
 

⇒ = −  
  

c

c

c

A P Q Ψ Ψ Ψ Ψ

A Ψ Ψ

A Ψ Ψ





















 (A.33) 

Using the last expression of (A.30), 
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1−⇒ =

⇒ =
c c

c c

A Ψ Λ Ψ
A Ψ Ψ Λ

 (A.34) 

(A.34) represents a generalized eigenvalue problem and implies that cΛ  and Ψ

correspond to the eigenvalues and eigenvectors of the matrix cA , respectively. 

A.3.  Modal decomposition of continuous-time state-space models 

A.3.1. Relationship with conventional modal analysis 

In conventional modal analysis the system response can be obtained as the sum of 

the contribution of all modes as 

( ) ( )t t= mx Ψ x  (A.35) 

where ( ) nt ∈mx  . 

Replacing (A.35) in (A.5), using 1−=c cΛ Ψ A Ψ  from (A.34) and pre-multiplying by 

1−Ψ , 

( ) ( ) ( )Tt t t= +m c m cx Λ x L u  (A.36) 

where T
cL  is the modal participation matrix defined by 

1T −=c cL Ψ B  (A.37) 

However, from (A.25) 1 1 T
ia

−  
=  
 

Ψ Ψ P




, and using (A.6) and (A.19), 
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1

*

* *

*

1

1

1

1

T T
i

T T

i

T
T

i

T
T

T
i

a

a

a

a

−

 
⇒ =  

 
   

⇒ =    
    

    
⇒ =     

⋅ ⋅       
  
 ⇒ =  
     

c c

c

c

c

L Ψ P B

E
L Ψ P P

0

Θ Θ E
L

0Λ Θ Λ Θ

Θ
L E

Θ

















 (A.38) 

Replacing (A.35) in (A.8), 

( ) ( ) ( )t t t= +c m cy V x D u  (A.39) 

where 

=c cV C Ψ  

*
1 1

* *
− −  

 ⇒ = − −      
c di ac ve ac

Θ Θ
V C C M K C C M C

ΛΘ Λ Θ
  

(A.40) 

Making use (A.20), the following special cases are highlighted, 

i. Only accelerations are measured: = =di veC C 0   

22 * *   ⇒ =   c acV C Θ Λ Θ Λ  

ii. Only velocities are measured: =di acC = C 0  

* *   ⇒ =  c vV C Θ Λ Θ Λ  

iii. Only displacements are measured: = =ve acC C 0  

*   ⇒ =  c diV C Θ Θ  

Summarizing, the continuous-time state-space model is described by 
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( ) ( ) ( )
( ) ( ) ( )

Tt t t

t t t

 = +


= +

m c m c

c m c

x Λ x L u

y V x D u



 (A.41) 

A.3.2. Modal decomposition of the continuous-time state-space model 

To fully decompose the continuous-time state-space mode, a modal 

decomposition of matrix cD  is required. Using (A.9) and (A.6), 

( ) ( )

1

1 1 1 1

−

− − − −

⋅ ⋅ =

 
− ⋅ ⋅ − ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅  

 

c c c

di ac ve ac

C A B
E

C C M K C C M C Q P P
0

 (A.42) 

Replacing 
1

1
1

−
−

−

 
=  

−  

K 0
Q

0 M
 from (A.3) in (A.42), 

( )

( )

1
1 1 1

1

1
1 1 1

1 1 1

−
− − −

−

−
− − −

− − −

 −  
⇒ = − −    

   
 −

⇒ = − −  
 

⇒ = − +

c c c di ac ve ac

c c c di ac ve ac

c c c di ac

K 0 E
C A B C C M K C C M C

00 M

K EC A B C C M K C C M C
0

C A B C K E C M E

 
(A.43) 

If =diC 0 , i.e., no displacement are measured, and using (A.9), 

1 1− −⇒ = =c c c ac cC A B C M E D  (A.44) 

So, the feed-through matrix can be expressed in terms of the matrices cA , cB , 

and cC  as 

1 1

1

1n
T T

i i

− −

=

⇒ = = =
λ∑c c c c c c c ci ciD C A B V Λ L v l  (A.45) 
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Finally, it is concluded that the output vector corresponds to the sum of modal 

contributions, 

( ) ( )
1

n

i
t t

=

⇒ =∑ iy y  (A.46) 

where each vector ( )tiy  corresponds to the response of a continuous-time state-space 

model of first order 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) 1

i i T
m i m

i T
m

i

x t x t t

t x t t

 = λ +



= + λ

ci

i ci ci ci

l u

y v v l u



 (A.47) 

where the complex scalar ( )( )i
mx t  corresponds to the i -th component of the state vector. 

A.4. Discrete-time state-space model 

The solution of the Equation (A.5) is given by (Jeffrey and Dai 2008) 

( ) ( ) ( ) ( )0
0

0

t
t t t

t

t e t e e d− − τ= + τ τ∫A A Ac c c
cx x B u  (A.48) 

Then, (A.48) can be converted to discrete time assuming that t k t= ∆  with k∈ , 

( ) ( ) ( )
1

1 1
1

tk
t t tk k k

k k
tk

e e d
+

− −τ+ +
+⇒ = + τ τ∫A Ac c

cx x B u  (A.49) 

i. Solution 1 - Zero Order Hold (ZOH): Constant input between two consecutive time 

samples. 

( ) [ ]1,k k kconstant      t t +⇒ τ = = τ∈u u  (A.50) 

Then, the integral in (A.49) can be solved as 
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( ) ( )
1 1

1 1

111

11 1

1

t tk k
t tk k

k
t tk k

tktk
k tk

t t tk k k
k

t
k

e d e e d

e e

e e e

e

+ +
−τ − τ+ +

+− τ−+

− −−+ +

− ∆−

⇒ τ τ = τ

= −

 = − − 
 = − 

∫ ∫A A Ac c c
c c

A Ac c
c c

A A Ac c c
c c

Ac
c c

B u B u

B u A

B u A

A I B u

 (A.51) 

Replacing (A.51) in (A.49) 

( )1
1

t t
k k ke e∆ ∆−
+⇒ = + −A Ac c

c cx x A I B u  (A.52) 

Defining 

[ ]1

te ∆

−

=

= −

Ac
d

d c d c

A

B A A I B
 (A.53) 

the state-space model in discrete-time can be expressed as 

= +
 = +

k+1 d k d k

k d k d k

x A x B u
y C x D u

 (A.54) 

where dA  = discrete state matrix (dynamical system matrix), dB  = discrete input matrix, 

≡d cC C  = discrete output matrix, ≡d cD D  = discrete direct feed-through matrix. Since 

dC  and dD  are dependent of the location of the outputs and of the matrices M  and K , 

which are time invariant in the linear case, then ≡d cC C  and ≡d cD D . 

ii. Solution 2 - First Order Hold (FOH): Linear variation of input between consecutive 

time samples. 

( ) ( ) [ ]1
1,k k

k k k kt              t t
t

+
+

−
⇒ τ = + τ− τ∈

∆
u uu u  (A.55) 

Then, the state vector in (A.49) can be expressed as 
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( )
1

1

1

tk
t t

k k k
tk

t t
k k

e e t t d

e e t

+
∆ ∆

+

∆ ∆
+

⇒ = + δ τ− ∆ τ

⇒ = + ∆

∫A Ac c
c k

A Ac c
c k

x x B u

x x B u

 (A.56) 

Defining 

t

t

e

t e

∆

∆

=

= ∆

Ac
d

Ac
d c

A

B B
 (A.57) 

the state-space model in discrete-time can be expressed as 

= +
 = +

k+1 d k d k

k d k d k

x A x B u
y C x D u

 (A.58) 

where dA  = discrete state matrix (dynamical system matrix), dB  = discrete input matrix, 

≡d cC C  = discrete output matrix, ≡d cD D  = discrete direct feed-through matrix. Since 

dC  and dD  are dependent of the location of the outputs and of the matrices M  and K , 

which are time invariant in the linear case, then ≡d cC C  and ≡d cD D . 

iii. Observation 1: the choice of inter-sample behavior of the input does not affect the 

derivation of matrices dA  (state matrix) and dC  (output matrix), consequently the 

relationship between the poles of the continuous and discrete models is invariant for 

any discretization used for the input. (A.53) and (A.57) represent two special choices 

for the discrete-time state-space model. 

iv. Observation 2: Let’s define a new state vector such that =x T z  where T  is a non-

singular square matrix. Then, replacing this equation in (A.58) yields 

1 1
1k k k

− −
+ = +z T A T z T B u  and  k k k= +y C T z D u , thus the matrices 1−T A T , 

1−T B , C T , and D  describe the same input-output relationships as matrices A , B , 
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C , and D  and therefore there are infinite number of state-space representations that 

produce the same input-output description. This implies that the physical matrices M

, K , and C  cannot be uniquely recovered from the system matrices A , B , C , and 

D . 

A.5. Relationships between continuous-time and discrete-time state space models 

Using the definition of the matrix exponential (Jeffrey and Dai 2008) 

0

1
!

z r r

r
e z

r

∞

=

=∑A A  (A.59) 

where A  is a square matrix and z  is a complex number, the state matrix in discrete-time 

can be expressed as 

( ) ( )21 1
2! !

kte t t t
k

∆= = + ∆ + ∆ + + ∆Ac
d c c cA I A A A  (A.60) 

But, from (A.34) the continuous state matrix can be written as 1−=c cA Ψ Λ Ψ , 

then, 

( ) ( )

( ) ( )

21 1 1

1 2 1 2 1

1

1 1
2! !
1 1
2! !

kt

t k k

t t

e t t t
k

e t t t
k

e e

∆ − − −

∆ − − −

∆ ∆ −

⇒ = + ∆ + ∆ + + ∆

⇒ = + ∆ + ∆ + + ∆

⇒ =

Ac
c c c

Ac
c c c

A Λc c

I Ψ Λ Ψ Ψ Λ Ψ Ψ Λ Ψ

I Ψ Λ Ψ Ψ Λ Ψ Ψ Λ Ψ

Ψ Ψ



  (A.61) 

Next, the following equation can be established 

1 1 1 1t t t ie e e
−∆ ∆ ∆ − − − µ⇒ = = = = =   

A Ψ Λ Ψ Λc c c
d dA Ψ Ψ Ψ Λ Ψ Ψ Ψ





 (A.62) 
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where t ie ∆  µ= =   
Λc

dΛ




 is the matrix of the discrete eigenvalues. Therefore, the 

continuous and discrete eigenvectors are identical and the continuous and discrete 

eigenvalues ( iλ  and iµ , respectively) satisfy the condition: 

( )lnt ii
i ie

t
λ ∆ µ

µ = ⇒ λ =
∆

 (A.63) 

Also, the discrete modal participation matrix, equivalently to (A.37), and the 

modal vectors as follow, equivalently to (A.40), can be expressed as: 

1T −=d dL Ψ B  

=d dV C Ψ  
(A.64) 

A.6. Relationship between state-space matrices and modal parameters of the 

system 

From (A.34), (A.61), (A.60), and (A.62) the following relations hold, 

1
c

−Λ = cΨ Λ Ψ  (A.65) 

1t te e∆ ∆ −=A Λc cΨ Ψ  (A.66) 

te ∆= Ac
dA  (A.67) 

1 1i− − µ= =   d dA Ψ Λ Ψ Ψ Ψ




 (A.68) 

Also, from (A.6), 

1 1− −

 
=  

− − 
c

0 I
A

M K M C
 (A.69) 
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From (A.34): 

i

⇒ =

⇒ = λ
c c

c i i

A Ψ Ψ Λ
A ψ ψ

 (A.70) 

If i

i

 φ
=  

φ  

1

i 2
ψ , 

1 1
i i

i
i i

− −

     φ φ
⇒ = λ    

− − φ φ        

1 1

2 2

0 I

M K M C
 (A.71) 

The first equation of (A.71) implies i i iφ = λ φ2 1 , then 

i

i i

φ 
⇒ =  λ φ 

iψ  (A.72) 

The second equation of (E.33) implies 

( )2
i i iλ + λ + φ =M C K 0  (A.73) 

Then, ( )2 22 0i i i iλ + ξ λ +ω =  and the poles of continuous-time state-space model 

can be obtained as 

* 2, 1i i i i i ii⇒λ λ = −ξ ω ± ω −ξ  (A.74) 

(A.72) and (A.74) show that the modal parameters of the structural system can be 

obtained from the eigenvalues and eigenvectors of the state dynamic matrix cA . Since in 

practice the data are recorded in discrete-time, the modal frequencies, modal damping 

and mode shapes of the structural system can be obtained using the relationships between 

discrete-time and continuous-time state-space models, (A.63) and (A.64), 
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*
i i i i⇒ω = λ λ = λ  with ( )ln i

i t
µ

λ =
∆

 (A.75) 

( ) ( )*

*

Re

2

i i i
i

ii i

λ + λ λ
⇒ ξ = − = −

λλ λ
 (A.76) 

⇒ = dΦ C Ψ  (A.77) 

where iω , iξ  ( 1,...,i n= ), and Φ  are the natural frequencies, damping ratios, and mode 

shapes of the structural system. 

A.7.  State equations for multiple-input multiple-output problems 

A.7.1. Multiple-support excitation problems 

For a linear system, the equation of dynamic equilibrium can be written in the 

following partitioned form (Chopra 2012) 

t t t
ff fs ff fs ff fsf f f

gsf ss sf ss sf ssg g g

            
+ + =            

                      

M M C C K K 0u u u
pM M C C K Ku u u

 

 

 (A.78) 

where f  = free nodes (superstructure), t
fu : absolute displacement of the free nodes, s  = 

support nodes, gu  = absolute displacement of the supports, gp  = support forces, ffM , 

ffC , and ffK  = mass, damping and stiffness matrices of the superstructure, ssM , ssC , 

and ssK  = mass, damping and stiffness matrices of the supports, fsM , fsC , and fsK  = 

mass, damping and stiffness coupling matrices. The unknowns of the problem described 

in (A.78) are t
fu  and gp . 
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Since the system is linear, the principle of superposition can be applied. Then, 

 

  
 

t s
f f

g g

total   pseudostatic dynamic

     
= +     

        
↑ ↑ ↑

u u u
0u u

 
(A.79) 

where s
fu  are the displacements due to static application of the prescribed support 

displacements gu at each time. 

Also, from the static equilibrium 

s
ff fs f

s
sf ss gg

    
=    

        

0K K u
K K pu

 (A.80) 

where s
gp  are the support forces required to statically impose displacements gu at each 

time. From the first equation of (A.78), it follows 

t t t
ff f fs g ff f fs g ff f fs g+ + + + + =M u M u C u C u K u K u 0     (A.81) 

Replacing (A.79) in (A.81), 

( ) ( )
( )

s s
ff f ff f ff f ff f fs g ff f fs g

s
ff f fs g

+ + = − + − +

− +

M u C u K u M u M u C u C u

K u K u

     

 (A.82) 

From (A.80), 

s
f s g=u R u  (A.83) 

where, sR  is the pseudo-static influence matrix defined by 

1
s ff fs

−= −R K K  (A.84) 

Then, 
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( ) ( )ff f ff f ff f ff s fs g ff s fs g+ + = − + − +M u C u K u M R M u C R C u     (A.85) 

Notes: 

- If damping matrices are proportional to stiffness matrices, then the damping term 
in (A.85) is equal to 0 , which is usually an unrealistic assumption. 

- Usually, the damping term is neglected because it is small compared to the inertia 
term. 

- For lumped mass models: fs =M 0  

- sN : # of DOF of supports  N : # of DOF of the superstructure 

From (A.85), 

( )
( )

1 1 1

1

f ff ff f ff ff f ff ff s fs g

ff ff s fs g

− − −

−

= − − − +

− +

u M K u M C u M M R M u

M C R C u

  



 (A.86) 

Then, 

( ) ( )

1 1

1 1

f f

f fff ff ff ff

g

ff ff s fs ff ff s fs g

− −

− −

    
=     

− −        
   

+    
− + − +      

0 Iu u

u uM K M C

0 0 u

M M R M M C R C u



 





 (A.87) 

Defining 

f

f

 
=  
  

u
x

u
 

1 1
ff ff ff ff
− −

 
=  

− −  
c

0 I
A

M K M C
 

( ) ( )1 1
ff ff s fs ff ff s fs
− −

 
=  

− + − +  
c

0 0
B

M M R M M C R C
 

(A.88) 
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g

g

 
=  
  

u
u

u





 

, the equation of dynamic equilibrium of a linear system subjected to multiple support 

excitations can be expressed in state-space form as 

( ) ( ) ( )t t t= +c cx A x B u  (A.89) 

A.7.2. Two-dimensional shear building model with translational and rotational 

input excitations 

The equation of motion can be expressed as 

t + + =M q C q K q 0   (A.90) 

where n n×∈M  , n n×∈C  , and n n×∈K   = mass, damping, and stiffness matrices of 

the structure, n∈q  ,  n∈q  , and n∈q   = displacement, velocity, and acceleration 

response of the structure. 

But 1 2
t

g gu= + + θq q 

  
   with [ ] 1

1 1 ... 1 T n×= ∈   and 

[ ] 1
2 1 ... T n

nh h ×= ∈   1
2 1

T n
nh h × = ∈    . Then, 

 

 

1 2g gu+ + = − − θM q C q K q M M 

  
   (A.91) 

 

21 2

2 2 1

gng g

n g

uu ×

× ×

  − − θ         
⇒ + = =            − θ              

EM MC M q K 0 q
0M 0 q 0 M q 0





 
 



 

 (A.92) 

 

floor i 

hi 

üg 

θg 
.. 
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where [ ]1 2= − −E M M  . From (A.92) the following first order differential equation 

can be written 

1 1

c c

− −

 
⇒ + =  

 
 

⇒ = − +  
 

⇒ = +

E
P x Q x u

0

E
x P Q x P u

0
x A x B u







 
(A.93) 

where  
=  
 

q
x

q
 

 1 2 2
1 1

n n− ×
− −

 
= − = ∈ 

− − 
c

0 I
A P Q

M K M C
   

 
[ ] [ ]

2 21 2 2
11

1 21 2

n n n× ×− ×
−−

     
= = = = − ∈      − −       

c

00 0E
B P

0 M M MM E


 

 

 

 
2 1

g

g

u

×

 
=  

θ  
u





 

A.7.3. Three-dimensional shear building model with translational excitations 

The equation of motion can be expressed as 

t + + =M q C q K q 0   (A.94) 

where 3 3n n×∈M  , 3 3n n×∈C  , and 3 3n n×∈K   = mass, damping, and stiffness 

matrices of the structure, 3n∈q  , 3n∈q  , and 3n∈q   = displacement, velocity, and 

acceleration response of the structure, and n  =  number of stories of the building. 

For a shear building model, the mass and stiffness matrices can be expressed as 
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  = =   
     

xx xy xθt

t yx yy yθ

m θx θy θθ

k k km 0 0
M 0 m 0 K k k k

0 0 I k k k

 (A.95) 

But t
g= +q q U   g⇒ + + = −M q C q K q M U  , where 

[ ]
1

1
2 1 2

3 13 1 3 1

1 ... 1 T n

nn n

            ×

×× ×

    
    

= = = = = ∈    
    

    

gx gxx

y g gy gy

θ

U uq
q q U U u

q 0 0






 


   

 

Then, the following first order differential equation can be written 

c c⇒ = +x A x B u  (A.96) 

where  
6 1n×

 
=  
 

q
x

q
 

 
1

2

3 2n×

 
 = −  
  

0
E M 0

0 0



  

 
2 1

=
×

 
 
  

gx

gy

u
u

u





 

  

 1 1
6 6n n

− −
×

 
=  

− − 
c

0 I
A

M K M C
  

 

3 2

11
1

1

6 2

n

n

×

−
−

×

 
       = = = −            
    

c

0
0 0E

B P
00 M E
0 0





 

 

ügx 
ügy 
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A.7.4. Three-dimensional shear building model with translational and rocking 

excitations 

The equation of motion can be expressed as 

t + + =M q C q K q 0   (A.97) 

where 3 3n n×∈M  , 3 3n n×∈C  , and 3 3n n×∈K   = mass, damping, and stiffness 

matrices of the structure, 3n∈q  , 3n∈q  , and 3n∈q   = displacement, velocity, and 

acceleration response of the structure, and n  =  number of stories of the building. 

For a shear building model, the displacement vector, mass and stiffness matrices 

can be expressed as 

3 1

t

n

             

×

 
 

= = + + 
 
 

x

y g g

θ

q
q q q q U Θ

q



   

             

  
  = =   
     

xx xy xθt

t yx yy yθ

m θx θy θθ

k k km 0 0
M 0 m 0 K k k k

0 0 I k k k

 

(A.98) 

where 

[ ]
[ ]

[ ]
[ ]

1

2

1 3

41

1 ... 1

1 ... 1

...

...

T
gx gx

T
gygy

T
n gx gx

T
gyn gy

u u
=        

uu

h h

h h

    
 = =   
         
 θ   θ
 = = =   
  θ   θ    

gx
g

gy

gx
g

gy

U
U

U

Θ
Θ

Θ



 












 





 

 

 

Then, 

 

ügx 
ügy 

θgx 
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( )

c c

⇒ + + = − +

⇒ + + =
⇒ = +

g gM q C q K q M U Θ

M q C q K q E u
x A x B u



 

 



 (A.99) 

where  
6 1n×

 
=  
 

q
x

q
 

 
1 3

2 4

3n 4×

 
 = − ⋅  
  

0 0
E M 0 0

0 0 0 0

 

   

 

4 1

=

×

 
 
 
 
 
  

gx

gy

gx

gy

u

u
u

θ

θ









 

 1 1
6 6n n

− −
×

 
=  

− − 
c

0 I
A

M K M C
  

 

3 4

1 31
1

2 4

6 4

n

n

×

−
−

×

 
       = = = −            
    

c

0
0 0 0E

B P
0 00 M E
0 0 0 0
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APPENDIX B: BAYESIAN INFERENCE FOR NONLINEAR 

STATE-SPACE MODELS 

B.1.  Nonlinear state-space model of dynamical systems 

Consider the following general discrete-time nonlinear state-space model 

( )
( )
( ) ( )

1 1 1 1

1 1

, ,

, ,

~ , ; ~ ,

k k k k k

k k k k k

k k k k

− − − −

− −

=

=

x f x u w

y h x u v

w 0 Q v 0 R

 (B.1) 

where the first and second equations are called state (or process) and measurement (or 

observation) equations, respectively. x , u , and y  are the state, input, and output vectors, 

respectively. f  and h  are the system and measurement nonlinear functions. w  and v  are 

the process and measurement noises, respectively, and the subscript denotes the time 

step. In the case of additive noises, previous model can be written as 

( )
( )
( ) ( )

1 1 1 1

1 1

,

,

~ , ; ~ ,

k k k k k

k k k k k

k k k k

+

+
− − − −

− −

=

=

x f x u w

y h x u v

w 0 Q v 0 R

 (B.2) 

B.2.  Bayesian approach 

The goal of the Bayesian approach is to determine estimates of at least the first 

two statistical moments of kx  based on the sequence of all available input and 

494 
 



www.manaraa.com

495 
 

measurements up to time k  ( 1:ku  and 1:ky ). Construction of the posterior PDF 

( )1: 1:,k k kp x u y  is required assuming prior distribution ( )0p x  known and that 

( )1 1: 1 1: 1,k k kp − − −x u y . For the sake of notation simplicity, the deterministic input ku  will be 

omitted from now on. 

Prior probability: Chapman-Kolmogorov (CK) equation 

( ) ( )
( ) ( )

( ) ( )

1: 1 1 1: 1 1

1 1: 1 1 1: 1 1

1 1 1: 1 1

,

,

k k k k k k

k k k k k k

k k k k k

p p d

p p d

p p d

− − − −

− − − − −

− − − −

 =  

=   

=

∫
∫
∫

x y x x y x

x x y x y x

x x x y x

 (B.3) 

( )1k kp −x x  is available from process equation ( )k ⋅f and the PDF of the noise kw  and  

( )1 1: 1k kp − −x y  available from the previous time step. 

Posterior probability: Bayes theorem 

( ) ( )
( ) ( )

( )
( ) ( )
( ) ( )

1: 1: 1

1: 1

1: 1

1: 1

1: 1

,k k k k k

k k k k

k k

k k k k

k k k k k

p p

p p
p

p p

p p d

−

−

−

−

−

=

=

=
∫

x y x y y

y x x y
y y

y x x y

y x x y x

 
(B.4) 

( )k kp y x  is the likelihood function and is obtained from ( )k ⋅h  and PDF of kv , 

( )1: 1k kp −x y  available from CK equation, and 

( ) ( )
( )

( ) ( )

1: 1 1: 1

1: 1 1: 1

1: 1

,

,

k k k k k k

k k k k k k

k k k k k

p p d

  p p d

  p p d

− −

− −

−

 =  

=       

=

∫
∫
∫

y y y x y x

y x y x y x

y x x y x

 (B.5) 
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B.3.  Bayesian approach for Gaussian approximation 

Consider the case of additive and Gaussian noises, i.e.,  

( )
( )
( )
( )

1 1 1 1,

,

~ ,

~ ,

k k k k k

k k k k k

k k

k k

+

+
− − − −=

=

x f x u w

y h x u v

w 0 Q

v 0 R

N
N

 (B.6) 

with kv , kw  independent processes and ( )0 0 0ˆ~ , xxx x PN  independent of kv  and kw .  

Assuming that the posterior PDF of the state at time 1kt −  can be approximated by 

a Gaussian density, 

( ) ( )1 1: 1 1 1 1 1 1ˆk k k k k k k− − − − − − −= xxp x y x ;x ,PN  (B.7) 

Replacing (B.7) in (B.3), 

( ) ( ) ( )
( ) ( )

1: 1 1 -1 1: -1 1

1 1 11 1 1 1ˆ

k k k k k k k

k k k kk k k k

p p p

p

− − −

− − −− − − −

=

= ⋅

∫
∫ xx

x y x x x y dx

x x x ;x ,P dxN
 (B.8) 

If ( )k ⋅f  and ( )k ⋅h are deterministic, from the first equation in (B.6): 

( ) ( )( )1 1 1 1,k k k k k k kp − − − −=x x x ;f x u ,QN  (B.9) 

Then,  

( ) ( ) ( )
( )( ) ( )

1: 1 1 -1 1: 1 1

1 1 1 1 1: 1 1,

k k k k k k k

k k k k k k k k

p p p

p

− − − −

− − − − − −

=

=

∫
∫

x y x x x y dx

x ;f x u ,Q x y dxN
 (B.10) 

But, 

{ } ( )( ) ( )E = =∫t t t;f s ,Σ dt f sN  (B.11) 
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{ } ( )
( )( ) ( )
( )( ) ( )

( ) ( )
( ) ( )

1: 1 1: -1

1 1 1 1 1: -1 1

1 1 1 1 1: -1 1

1 1 1 1: -1 1

1 1 1 11 1 1 1

,

,

,

ˆ,

k k k k k k

k k k k k k k k k k

k k k k k k k k k k

k k k k k k

k k k k kk k k k

E p

p

p

−

− − − − −

− − − − −

− − − −

− − − −− − − −

⇒ =

 =  
 =  

=

=

∫
∫ ∫
∫ ∫
∫
∫ xx

x y x x y dx

x x ;f x u ,Q x y dx dx

x x ;f x u ,Q dx p x y dx

f x u x y dx

f x u x ;x ,P dx

N

N

N

 (B.12) 

( ) ( )1 1 1 11 1 1 1 1ˆ ˆ,k k k k kk k k k k k− − − −− − − − −⇒ = ∫ xxx f x u x ;x , P dxN  (B.13) 

Also, 

( )( ){ }1 1 1ˆ ˆ
T

k kk k k k k kE− − −= − −xxP x x x x  

( )( ) ( )1: -11 1 1ˆ ˆ
T

k k k k kk k k k k k p− − −⇒ = − −∫xxP x x x x x y dx  

( )1: 11 1 1ˆ ˆT T
k k k k kk k k k k kp −− − −⇒ = −∫xxP x x x y dx x x  

(B.14) 

( ) ( ) ( )1 1 1 1 1 1 11 1 1 1 1 1 1ˆ ˆ ˆ, ,T T
k k k k k k k kk k k k k k k k k k− − − − − − −− − − − − − −= − +⇒ ∫xx xxP f x u f x u x ;x , P dx x x QN  (B.15) 

Now, considering a Gaussian approximation for ( )1: 1k kp −x y  

( ) ( )1: -1 1 1ˆk k k k k k kp − −= xxx y x ;x ,PN  (B.16) 

Also, 

( ),k k k k k= +y h x u v  (B.17) 

Notin that  

 
( ) ( )

( ) ( )
1: 1 1: 1

1: 1

,k k k k k k

k k k k k

p p

p p

− −

−

=

=

∫
∫

y y x y y dx

y x x y dx
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{ } ( )
( ) ( )
( ) ( )

( ) ( )

1: 1 1: 1

1: 1

1: 1

1: 1

,

,

k k k k k k k

k k k k k k k

k k k k k k k

k k k k k k

E p

p p

p p

p

− −

−

−

−

⇒ =

 =  
 =  

=

∫
∫ ∫
∫ ∫
∫

y x y y y y dy

y y x x y dx dy

y y x dy x y dx

h x u x y dx

 (B.18) 

( ) ( )1 1 1ˆ ˆ,k k k k kk k k k k k− − −⇒ = ∫ xxy h x u x ;x ,P dxN  (B.19) 

Defining 

( )1 1ˆ,k k kk k k ke − −= −y h x u y  (B.20) 

( ){ }
( ) ( ){ }

1 1 1

1 1ˆ ˆ, ,

T

k k k k k k

T

k k k k k kk k k k

E e e

E

− − −

− −

⇒ =

   = − −   

yy y yP

h x u y h x u y
 (B.21) 

( )( ) ( )( ) ( )1: 11 1 1ˆ ˆ, ,
T

k k k k k k k k kk k k k k k p −− − −⇒ = − −∫yyP h x u y h x u y y y dy  (B.22) 

( ) ( ) ( )1 1 1 1 1ˆ ˆ ˆ, ,T T
k k k k k k k k kk k k k k k k k k k− − − − −⇒ = − +∫yy xxP h x u h x u x ;x ,P dx y y RN  (B.23) 

Similarly, 

( )( ){ }1 1 1ˆ
T

kk k k k k kE e− − −= −xy yP x x  (B.24) 

( ) ( )( ) ( )1: 11 1 1ˆ ˆ, ,
T

k k k k k k k k kk k k k k k p −− − −⇒ = − −∫ ∫yyP x x h x u y x y y dx dy  (B.25) 

  ( ) ( )1 1 1 1 1ˆ ˆ ˆ,T T
k k k k k kk k k k k k k k k k− − − − −⇒ = −∫xy xxP x h x u x ;x , P dx x yN  (B.26) 

Then,  

( ) ( )1: ˆk k k k k k kp = xxx y x ;x ,PN  (B.27) 

where  
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( )

( )

1 1

1

1

1 1

ˆ ˆ ˆk kk k k k k k

T
k kk k k k k k

k k k k k

          

− −

−

−

− −

= + −

= −

=

xx xx yy

xy yy

x x K y y

P P K P K

K P P

 (B.28) 

B.4.  Kalman-based filters for nonlinear Gaussian processes 

The posterior PDF of kx  given 1:ky  can be written as: 

( ) ( )
( ) ( )1:

1: 1:
1:

,
,k k

k k k k
k

p
p p

p
= ∝

x y
x y x y

y
 (B.29) 

where it is assumed that ( )1:kp y  can be ignored because it is a normalization PDF. Now, 

we can approximate the joint PDF  ( )1:,k kp x y  by the predictive PDF: 

( ) ( )1: 1 1: 1, ,k k k k k kp p − −≈x y x y x y  (B.30) 

Let,  

{ }1:ˆ ˆ k kk k E= =x x x y  (B.31) 

( )( ){ }ˆ ˆ
1:ˆ ˆ T

k k kk k E= = − −xx xxP P x x x x y  (B.32) 

The Gaussian posterior can be written as: 

( ) ( )

( )

ˆ ˆ
1:

1 22 ˆ ˆ

ˆ ,

1 1exp
22 x

k k

N

p =

 = − 
 π

xx

xx

x y x P

A
P

N
 (B.33) 

where 
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( ) ( ) ( )

( ) ( ) ( ) ( )

1ˆ ˆ

1 1 1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ

ˆ ˆ ˆ ˆ

T
k k

T T T T
k k k k

−

− − − −

= − −

= − − +

xx

xx xx xx xx

A x x P x x

x P x x P x x P x x P x
 (B.34) 

Let, 

k
k

k

 
=  
 

x
z

y
 (B.35) 

Assuming that the joint PDF is Gaussian: 

( ) ( ),k kp = zzz z PN  (B.36) 

where 

1

1 1: 1
1

ˆ
,

ˆ
k kk k

k k k
k k k k

E
−

− −
−

      = =      
        

xx x
z x y

y y y
=  (B.37) 

( )( ){ } 1 1
1 1: 1

1 1

, k k k kT
k k k k k k

k k k k

E − −

− −
− −

  
 = − − = 
    

xx xyxx xy
zz

yx yy yx yy

P PP P
P z z z z x y

P P P P
=  (B.38) 

From the matrix inversion lemma: 

( ) 1 11 12

21 22

−  
=  
 

zz C C
P

C C
 (B.39) 

where 

( )
11

11 1 1 1 1k k k k k k k k

−−

− − − −
 = −  

xx xy yy yxC P P P P  

( ) 1

12 11 1 1k k k k

−

− −= − xy yyC C P P  

( ) 1

12 22 1 1k k k k

−

− −= − yx yyC C P P  

(B.40) 
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( )
11

22 1 1 1 1k k k k k k k k

−−

− − − −
 = −  

yy yx xx xyC P P P P  

Then, the Gaussian joint PDF can be written: 

( ) ( )

( )( ) 1 22

,

1 1exp
22 x y

k k k

N N
k

p

+

=

 = − 
 π

zz

zz

z z P

B
P

N
 (B.41) 

where 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )

1

11 12

21 12

11 11 12 ...

T
k k k k k k k k k

T T
k k k k k k k k

T T
k k k k k k k k

T T
k k k k k k

−
= − − − −      

= − − + − −

+ − − + − −

= + − + − +  

zzB x x y y P x x y y

x x C x x x x C y y

y y C x x y y C y y

x C x x C x C y y

 

 (B.42) 

Comparing (B.42) and (B.34): 

( ) ( )
111ˆ ˆ

11 1 1 1 1k k k k k k k k

−−−

− − − −
 = = −  

xx xx xy yy yxP C P P P P  (B.43) 

( ) 1ˆ ˆ
1 1 1 1k k k k k k k k

−

− − − −⇒ = −xx xx xy yy yxP P P P P  (B.44) 

( ) ( )

( )

( ) ( ) ( )

1ˆ ˆ
11 12

11

1 1 1 1

11 1

1 1 1 1 1 1

ˆ k k k

kk k k k k k k k

k kk k k k k k k k k k k k

−

−−

− − − −

−− −

− − − − − −

= − −

 = −  

 + − −  

xx

xx xy yy yx

xx xy yy yx xy yy

P x C x C y y

P P P P x

P P P P P P y y

 (B.45) 

Solving for x̂  from (B.45) and using (B.44): 

( ) ( )
1

1 1ˆ k k kk k k k

−

− −= + −xy yyx x P P y y  (B.46) 

Defining the Kalman gain as 
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( ) 1

1 1k k k k k

−

− −= xy yyK P P  (B.47) 

Using (B.44), (B.46), and (B.47): 

( )1 1

1

ˆ ˆ ˆk kk k k k k k

T
k kk k k k k k

− −

−

⇒ = + −

= −xx xx yy

x x K y y

P P K P K
 (B.48) 

where 

{ }1 1 1 1 1ˆ ˆ
T

k k k k k k k k k kE− − − − −
   = − −   

xxP x x x x  

{ }1 1 1 1 1ˆ ˆ
T

k k k k k k k k k kE− − − − −
   = − −   

xyP x x y y  

{ }1 1 1 1 1ˆ ˆ
T

k k k k k k k k k kE− − − − −
   = − −   

yyP y y y y  

(B.49) 

B.5.  Kalman Filter for linear systems 

Consider the following linear state-space model 

1 1 1 1 1k k k k k k

k k k k

− − − − −= + +
= +

x F x G u w
y H x v

 (B.50) 

where the noise processes kw  and kv are white, zero-mean, uncorrelated, and have 

covariance matrices kQ  and kR  respectively, i.e., 

( ) ( )~ , ~ ,k k k k

T T
k j k k j k j k k j

T
k j

E E

E

− −   = δ = δ   
  = 

w 0 Q v 0 R

w w Q v v R

v w 0

 (B.51) 

Time-update step 

From the state equation, 
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[ ]
[ ]

[ ]

| 1 1: 1

1 1 1 1 1

1 1 1 1

1 1| 1 1 1

ˆ |

ˆ

k k k k

k k k k k

k k k k

k k k k k

 E

E

E

− −

− − − − −

− − − −

− − − − −

⇒ =

= + +

= +

= +

x x y

F x G u w

F x G u

F x G u

 

| 1 1 1| 1 1 1ˆ ˆk k k k k k k − − − − − −⇒ = +x F x G u  

(B.52) 

Similarly, 

( )( )
( )( )

( )( ) ( )( )
( )( )

| 1 | 1 | 1

1 1 1 1 1 1 1| 1 1 1

1 1 1| 1 1 1 1 1| 1 1

1 1 1| 1 1 1| 1 1 1 1

ˆ ˆ

ˆ

ˆ ˆ

ˆ ˆ

T

k k k k k k k k

T
k k k k k k k k k k

T

k k k k k k k k k k

T T T
k k k k k k k k k k

E

E

E

E E

− − −

− − − − − − − − − −

− − − − − − − − − −

− − − − − − − − − −

 = − −  
 = + + − − 
 = − + − +  

 = − − +  

P x x x x

F x G u w F x G u

F x x w F x x w

F x x x x F w w



( ) ( )1 1 1| 1 1 1 1 1| 1 1ˆ ˆT T
k k k k k k k k k kE E− − − − − − − − − −

  + 

   − + −   F x x w w x x F

 (B.53) 

but ( )1 1| 1ˆk k k− − −−x x  is uncorrelated with 1k−w  

| 1 1 1| 1 1 1
T

k k k k k k k− − − − − −⇒ = +P F P F Q  (B.54) 

Equation (B.54) is known as Discrete-time Lyapunov equation or Stein equation. 

Measurement-update step  

A linear estimator of kx  when the measurement ky  is recorded can be written as 

| , | 1ˆ ˆk k k x k k k k−= +x K x K y  (B.55) 

Then, 

[ ] [ ]
( ) [ ] [ ]

| , | 1

, | 1

ˆ ˆ

ˆ
k k k k x k k k k k k k

k x k k k k k k k

E E E E

E E E

−

−

   − = + + −   
 = + − + 

x x K x K H x v x

K x K H I x K v
 (B.56) 

If the estimator is unbiased, |ˆ k k kE  − = x x 0 , and then  
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,k x k k= −K I K H  (B.57) 

( )| | 1 | 1ˆ ˆ ˆk k k k k k k k k − −⇒ = + −x x K y H x  (B.58) 

The expected value of the estimation error can be expressed as  

( ) ( )
( )

( )
( ) [ ]

, | | 1 | 1

| 1 | 1

, 1 | 1

, 1

ˆ ˆ ˆ

ˆ ˆ

ˆ

x k k k k k k k k k k k k

k k k k k k k k k k

x k k k k k k k k

k k x k k k

E E E

E

E

E E

− −

− −

− −

−

    ∈ = − = − − −     
 = − − + − 
 = ∈ − − − 

 = − ∈ − 

x x x x K y H x

x x K H x v H x

K H x x K v

I K H K v

 (B.59) 

and its covariance matrix as 

( )( )
( ) [ ]{ }{ }

( ) ( ) ( )
( )

| , , | |

, 1

, 1 , 1 , 1

, 1

ˆ ˆ
TT

k k x k x k k k k k k k

T
k k x k k k

T TT T
k k x k x k k k k k x k k k

T T T T
k k x k k k k k k k

E E

E E v

E E

E v E

−

− − −

−

  ⇒ = ∈ ∈ = − −    
  = − ∈ −  

   = − ∈ ∈ − − ∈ − −   
   − ∈ +   

P x x x x

I K H K E

I K H I K H K v I K H

I K H K K v v K



 (B.60) 

But , 1x k−∈  is independent of kv , then 

[ ], 1 , 1 0T T
k x k k x kE E E− −   ∈ = ∈ =   v v  (B.61) 

and the following expression for |k kP  is obtained 

( ) ( )

( )
( )

| | 1

11 1
| 1

| 1

T T
k k k k k k k k k k k

T
k k k k k

k k k k

−

−− −
−

−

⇒ = − − +

 = +  
= −

P I K H P I K H K R K

P H R H

I K H P

 (B.62) 
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Optimality condition of the Kalman gain  

Let, 

( ) ( ), , , , |
T T

k x k x k x k x k k kJ E E tr tr+ + + +  = ∈ ∈ = ∈ ∈ =    P  (B.63) 

but 

( )
( )

| | 1 | 1 | 1 | 1

| 1 | 12 2

T T T T
k k k k k k k k k k k k k k k k k k k

T Tk
k k k k k k k k k

k

J
− − − −

− −

= − − + +

∂
⇒ = ⇒ − + + =

∂

P P K H P P H K K H P H R K

0 P H K H P H R 0
K

 (B.64) 

( ) 1

| 1 | 1

1
|

T T
k k k k k k k k k

T
k k k k

−

− −

−

⇒ = +

=

K P H H P H R

P H R
 (B.65) 

B.6.  Numerical integration: Gauss-Hermite and Unscented transformation 

In the Bayesian approach for Gaussian approximation (Section B.3), integrals of 

the form ( ) ( )ˆ; , xx d= ∫I g x x x P xN  need to be solved. Note that 

( )
( )

( ) ( )1
1 2

1 1 ˆ ˆexp
22

T

n
d− = − − −   π 

∫I g x x x Σ x x x
Σ

 (B.66) 

Let T=Σ S S  and ( )11 ˆ
2

−= −z S x x , then 

( )
( )2

2 e
2

T

n d−⇒ =
π ∫ z zI g z z  (B.67) 

For n=1 (univariate Gaussian PDF) ˆ
2

−
=
σ
x xz , then 

 



www.manaraa.com

506 
 

( ) 21 2
1

zI f z e dz
∞

− −

−∞

⇒ = π ∫  (B.68) 

But ( ) ( )2

1

M
z

i i
i

f z e dz w f z
∞

−

=−∞

≈∑∫ : Gauss-Hermite (GH) quadrature. 

Let’s generate a set of orthonormal polynomials ( )jH z , 

( ) ( )

( ) ( ) ( )

1 0 1 4

1 1

10

2
1 1j j j

H z H z

jH z z H z H z        j=0,...,M
j j

−

+ −

= =
π

= −
+ +

 (B.69) 

Let ( ) ( ) ( )1 1 12j j j j j j
j zH z H z H z− + +β = ⇒ = β +β  

In matrix form: 

( ) ( ) ( )M M M Mz z z H z= +βh J h e  (B.70) 

where  ( ) ( ) ( ) ( )0 1,..., 1
T

Mz H z H z      M−= ×  h  

 [ ] ( )0,0,...,1 1T
M      M= ×e  

1

1 2

2

1

1

0
0

0
0

M

M

M

−

−

β 
 β β 
 = β
 β 
 β 

0
J

0
 



 tridiagonal 

If (B.70) is evaluated for values of z such that ( ) 0MH z = ( ) ( )Mz z z⇒ =h J h  

( )z⇒ h  is an eigenvector of MJ  if ( ) 0MH z = . 

These eigenvectors are: 
( )j ii

j
i

H z
v

W
=  where ( )

1 2

0

M

i j i
j

W H z
−

=

 =  ∑  
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The ortoghonality condition of the eigenvectors is 

1

0

M
i k
j j ik

j
v v

−

=

= δ∑  (B.71) 

The completeness condition of the eigenvectors is given by 

( ) ( )
0 0

M M
j i l ii i

j l jl
j j i

H z H z
v v

W= =

= = δ∑ ∑  (B.72) 

The ortoghonality condition of the Hermite polynomials is 

( ) ( ) ( )j l jldz w z H z H z
∞

−∞

= δ∫  (B.73) 

Then, the continuous-time versus discrete-time versions can be compared 

Continuous-time Discrete-time 

∞

−∞
∫

 

M

i 1=
∑

 

( )dz w z  i1 W  

 

Notes: 

• For products of polynomials up to order M, this quadrature gives exact results. 

• ( ) ( ) ( )1 0M MH z H z w z dz
∞

−
−∞

=∫  since ( ) 0MH z =  on the nodes. 

• Any polynomial of order ( )2 2M −  can be written as a sum of products of pairs 

of polynomials up to order ( )1M −  → for any polynomial of order ( )2 1M −  or 

less, the quadrature is exact. 
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The previous formulation is one dimension. For the multivariate case, it must be 

applied sequentially (one variable at a time). 

Example 1: 3M =  and n -dimensional vector 

( )
( )

( )1 1

1

2

3 3

1 1

2 e
2

2 , ,

T

n n
n

n

i i i i
i i

d

x x p p

−

= =

⇒ =
π

=

∫

∑ ∑

z zI g z z

g  

 (B.74) 

where 
2
n

n

i
i

q
p =  

Example 2: 3M =  and univariate vector 

( ) ( ) ( )2
3 2

1 2 z
1 i i j j

i 1 j 0
I f z e dz q f x q f x

∞
− −

= =−∞

⇒ = π ≈ =∑ ∑∫
 

(B.75) 

where 
3 2
0

3 2

z
 −
 

=  
 
 

, 1

1 6
2 3
1 6

q w−

 
 = π =  
  

, ˆ 2i ix x z= + σ  

When ( ) 1=g z  in (B.74): 
1

1
2

i

i

n

j
j

j j

p
I p

p p
= ⇒ =

∑ ∑


 

 

For a 2-D vector: ( )
8

2
0

j j
j

I
=

= α∑g x  

For a n-D vector: ( )
1

0

nM

n j j
j

I
−

=

= α∑ g x  

where  
( )
( )

0

1 2

1 2

ˆ

ˆ 3

ˆ 3

ˆ . . .

j j

j j n

n
j

        j=1,...,n

     j=n+1,...,2n

H O T               j=2n+1,...,M -1
−

=

= +

= −

= +

x x

x x Σ

x x Σ

x x

 

 



www.manaraa.com

509 
 

 

The unscented transformation (UT) is a modified version that uses the first 

( )2 1n +  terms of the GH quadrature, 

( )

( )

0

1 2

0

1 2

0

ˆ

ˆ 1
1

ˆ 1 2
1

j j

j j

n         j= ,...,n
w

n      j=n+ ,..., n
w

=

= +
−

= −
−

x x

x x Σ

x x Σ

 
(B.76) 

where 01 1 2
2j

ww      j= ,..., n
n

−
=  

In the GH the number of operations on each iteration is ( )nMO  while in the UT 

the number of operations on each iteration is ( )2 1n +O . 

B.7.  The Unscented transformation 

In this section, the accuracy of the UT is investigated. 

B.7.1. Taylor series expansion and notation 

Let n∈x   and ( )g x  a vector-valued function: 

( ) ( ) ( ) ( )

( ) ( )

1

1 1
1

2

1 1
1

...

1 ... ...
2!

n n
n

n n
n

x x x x
x x

x x x x
x x

 ∂ ∂
= + − + + − ∂ ∂ 

 ∂ ∂
+ − + + − + ∂ ∂ 

x

x

g x g x g

g

 (B.77) 

Defining i i ix x x= −  where [ ]i ix E x=  
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( ) ( )
1 2

1 1
1 1

1... ... ...
2!n n

n n

x x x x
x x x x

   ∂ ∂ ∂ ∂
= + + + + + + +   ∂ ∂ ∂ ∂   

x x
g x g x g g   

 
(B.78) 

Defining the operator ( )
1

kn
k

i
i i

D x
x=

 ∂
=  ∂ 
∑x x

g g x


  

( ) ( ) 1 2 31 1 ...
2! 3!

D D D⇒ = + + + +x x xg x g x g g g
  

 
(B.79) 

B.7.2. Nonlinear transformation of a random vector 

Consider a nonlinear function ( )=y h x  where x  is a random vector and h  is a 

vector-valued function. 

Then, the Taylor series expansion of ( )=y h x  around x  is 

( ) ( ) 1 2 31 1 ...
2! 3!

D D D= = + + + +x x xy h x h x h h h
  

 
(B.80) 

where = −x x x . 

i. True (exact) mean of y  

( ) ( ) 1 2 31 1 ...
2! 3!

E E D D D  = = + + + +    
x x xy h x h x h h h
  

 

( ) 1 2 31 1 ...
2! 3!

E D D D ⇒ = + + + +  
x x xy h x h h h
  

 

(B.81) 

But ( ) [ ] ( )1

1 1

n n

i i
i ii i

E D E x E x
x x= =

 ∂ ∂  = = =   ∂ ∂ 
∑ ∑x x x

h h x h x 0


  . Similarly, 

( )
3

3

1

n

i
i i

E D E x
x=

  ∂   =    ∂   
∑x x

h h x


 . 
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i.1. For a random vector x  with zero mean and symmetric PDF ( ( ) ( )= −x xf x f x ) 

( ) ( ) ( )
0

0

k k k k
k E

∞ ∞

−∞ −∞

 ⇒ = = = +  ∫ ∫ ∫x x xm x x f x dx x f x dx x f x dx  (B.82) 

If k is odd ( )k k= − −x x , then 

( ) ( )

( ) ( ) ( )

( ) ( )

0

0

0 0
0

0

0

k k k
k

k k

k k

E
∞

−∞

∞ ∞

∞

−∞

 = = + 

= − − +

= − + =

∫ ∫

∫ ∫

∫ ∫

x x

x x

x x

m x x f x dx x f x dx

x f x dx x f x dx

x f x dx x f x dx

 (B.83) 

It can be observed that 3 0E D  = x h


 because in the sum there are only 3rd order 

terms ( 3 2
1 1 2, ,...E x E x x         ). Similarly, 0  oddmE D m  = ∀ x h



. 

 Therefore, the true mean of a random vector with zero mean and symmetric PDF 

can be expressed as 

( ) ( ) 2 41 1 ...
2! 4!

E E D E D    ⇒ = = + + +     x xy h x h x h h
 

 (B.84) 

 But 

( )
2 2

2

1 , 1

2 2

, 1 , 1

1 1 1
2! 2! 2!

1 1
2! 2

n n

i i j
i i ji i j

n n

i j ij
i j i ji j i j

E D E x E x x
x x x

E x x
x x x x

=
= = =

= == =

     ∂ ∂     = =    ∂ ∂ ∂        

∂ ∂ = =  ∂ ∂ ∂ ∂

∑ ∑

∑ ∑

x x x
x x

x x x x

hh h x

h hP



  

 

 (B.85) 

Therefore, the true mean is given by 
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( ) ( )
2

4

, 1

1 1 ...
2 4!

n

ij
i j i j

E E D
x x= =

∂   = = + + +   ∂ ∂∑ x

x x

hy h x h x P h


 (B.86) 

ii. True (exact) covariance matrix of y  

( )( )TE  = − − yP y y y y  (B.87) 

But 

( ) ( )

( )

1 2 3

1 2 3

1 1 ...
2! 3!

1 1 ...
2! 3!

D D D

E D E D E D

 − = + + + + − 
 
      + + + +       

x x x

x x x

y y h x h h h

h x h h h

  

  

( ) 1 2 3

1 2 3

1 1 ...
2! 3!

1 1 ...
2! 3!

D D D

E D E D E D

 ⇒ − = + + + − 
 
      + + +       

x x x

x x x

y y h h h

h h h

  

  

 

(B.88) 

ii.1. For a random vector x  with zero mean and symmetric PDF ( ( ) ( )= −x xf x f x ) 

( ) 1 2 3 2 41 1 1 1... ...
2! 3! 2! 4!

D D D E D E D      ⇒ − = + + + − + +         
x x x x xy y h h h h h
    

 (B.89) 

{ }1 2 2 41 1 1... ...
2! 2! 4!

TE D D E D E D
        ⇒ = + + − + +             

y x x x xP h h h h
   


 (B.90) 

If the PDF is symmetric and = −x x x  is zero-mean, all the odd powered terms 

will be zero. Then, 

( ) ( ) ( ) ( )

( )

1 3 2 2 3 1
1 1

22

3! 2!2! 3!

...
2! 2!

T T T
T

T

D D D D D D
E D D E

DDE E

 
   ⇒ = + + + +    

 
     +      

x x x x x x
y x x

xx

h h h h h h
P h h

hh

     

 





 (B.91) 

 Note that  
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( )1 1

1 1

, 1

, 1

, 1

T
n nT

i i
i ii i

Tn

i j
i j i j

n

i i j j
i j

n

i ij j
i j

E D D E x x
x x

E x x
x x

E x x

= =

=

=

=

   ∂ ∂   =         ∂ ∂    
 ∂ ∂

=  
∂ ∂  

 =  

=

∑ ∑

∑

∑

∑

x x
x x

x x

h hh h

h h

H H

H P H

 

 

 

 

 (B.92) 

where i
ix

∂
=
∂

x

hH . 

 Therefore, the true covariance matrix of a random vector with symmetric PDF can 

be expressed as 

( ) ( ) ( )

( )

1 3 2 2 3 1

22

3! 2!2! 3!

...
2! 2!

T T T

T

T

D D D D D D
E

DDE E

 
 ⇒ = + + + +
 
 
     +      

x x x x x x
y

xx

h h h h h h
P HPH

hh

     





 (B.93) 

iii. Unscented transformation 

Premises: 

1. It is easy to perform a nonlinear transformation on a single point (rather than an 

entire PDF). 

2. It is not too hard to find a set of individual points in state-space whose sample 

PDF approximates the true PDF of a state vector. 

Idea: 

 



www.manaraa.com

514 
 

1. Find a set of deterministic vectors (sigma points) whose ensemble mean and 

ensemble covariance are equal to the mean and covariance of a vector x. 

2. Apply the known nonlinear function ( )=y h x  to each sigma point to obtain 

transformed vectors. 

3. Compute the ensemble mean and covariance of the transformed vectors which are 

an estimate of the true mean and covariance of y. 

iii.1. Basic Unscented transformation 

Sigma points (SPs): 

( ) ( )

( ) ( )
( ) ( )

( ) ( )

1 2

1

1

1Weights : 
2

i i

Ti

i
Tn i

i

i i
c m

   i= ,..., n 

n    i= ,...,n         

n    i= ,...,n

W W
n

+

= +

=

= −

= =

x x

x P

x P







X

 (B.94) 

where ( )Tn n n=P P P  (square-root matrix) and ( ) :  ith row of 
i

n nP P  

 Sample mean of the sigma points: 

( ) ( ) ( ) ( )
2 2

1 1 1

1 1 1 2
2 2 2

n n nT Ti

i i ni i i n
n n n n n

n n n−= = = +

 = + + − = =  
∑ ∑ ∑x P x P x xX  (B.95) 

 Sample covariance of the sigma points: (maximum likelihood estimation for 

Gaussian distribution) 
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( )( ) ( )( ) ( )( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 2 2

1 1 1

2

1 1

1 1 1
2 2 2

1 1
2 2

n n nT T Ti i i i

i ii i i

n nT T

i i i n i ni i n

n n
n n n

n n n n n n
n n

= = =

− −= = +

 − − = =  
 

 = + = + = 
 

∑ ∑ ∑

∑ ∑

x x x x P P

P P P P P P P

 X X
 (B.96) 

 Mean approximation: The SPs are propagated through the nonlinear function 

( ) ( )( )i i= hY X  (B.97) 

with 1,..., 2i n= . Then, 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2 2
1 2 3

1 1 1

2
1 2 3

1

1 1 1 1 ....
2 2 2! 3!

1 1 1 ....
2 2! 3!

i i i

i i i

n n n
i i i

u m
i i i

n

i

W D D D
n n

D D D
n

= = =

=

 = = = + + + + 
 

 = + + + + 
 

∑ ∑ ∑

∑

x x x

x x x

y h x h h h

h x h h h

  

  

Y Y
 (B.98) 

 For an integer 0k ≥ : 

( )
( ) ( )

2 12 2
2 1

1 1 1
j

kn n n
jk

i
j j i i

D x
x

+

+

=
= = =

  ∂ =  ∂   
∑ ∑ ∑x x x

h h x


  

( ) ( )2 1 2 12

2 1
1 1

k kn n
j

i k
j i i

x
x

+ +

+
= = =

 ∂ 
=    ∂   
∑ ∑

x x

h x
  

( ) ( )2 1 2 12

2 1
1 1

k kn n
j

i k
i j i

x
x

+ +

+
= = =

   ∂
 =   ∂   

∑ ∑
x x

h x
  

(B.99) 

 But, ( ) ( ) 1j n j    j= ,...,n+= −x x   

( )
( ) ( ) ( ) ( )

( )

2 1 2 12 1 2 12
2 1

2 1 2 1
1 1 1 1

2
2 1

1
0

j

j

k kk kn n n n
j jk

i ik k
j i j ji i

n
k

j

D x x
x x

D

+ ++ +
+

+ +
= = = == =

+

=

    ∂ ∂
 ⇒ = −   ∂ ∂     

⇒ =

∑ ∑ ∑ ∑

∑

x
x x x x

x

h x h x
h

h





 

 (B.100) 
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 ∴  all odd terms are equal to zero in equation (B.98) for uy . 

( ) ( ) ( )

( ) ( ) ( ) ( )

2
2 4

1

2 2
2 4 6

1 1

1 1 1 ....
2 2! 4!
1 1 1 1 1 ...
2 2! 2 4! 6!

i i

i i i

n

u
i

n n

i i

D D
n

D D D
n n

=

= =

 ⇒ = + + + 
 

 = + + + + 
 

∑

∑ ∑

x x

x x x

y h x h h

h x h h h

 

  

 (B.101) 

In addition, 

( )
( ) ( )

22 2 2
2

1 1 1

1 1 1 1
2 2! 2 2!i

n n n
k

i
i k i i

D x
n n x =

= = =

 ∂
=  ∂ 

∑ ∑ ∑x x x
h h x



  

( ) ( ) ( )22 2

1 , 1

1
4

n n
k k

i j
k i j i j

x x
n x x= = =

∂
=

∂ ∂∑∑
x x

h x
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x x

h x
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x x
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2

n
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x x

h x
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(B.102) 

Then, the approximated mean can be expressed as 
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( ) ( )
( ) ( )

2 2
4 6

, 1 1

1 1 1 1 ...
2 2 4! 6!i i

n n

u ij
i j ii j

D D
x x n= ==

∂  ⇒ = + + + + ∂ ∂  
∑ ∑ x x

x x

h x
y h x P h h

 

 (B.103) 

 Comparing (B.86) and (B.103) it is concluded that the approximated mean, uy , 

matches the true mean up to the third order of the Taylor Series expansion if x  has zero-

mean and a symmetric PDF. 

 Covariance approximation: 

( ) ( )( ) ( )( ) ( ) ( )( )( ) ( )( )( )
2 2

1 1

n n TTi i i i i i
u c u u c u u

i i
W W

= =

= − − = − −∑ ∑P y y h y h yY Y X X  

( ) ( ) ( ) ( ) ( )

( ) ( )
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1 2 3
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2 41
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=
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h h
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( )( ) ( )( )1 21
2

i i

T
T

D D+  
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−
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(B.104) 

 But ( ) ( ) 1i n i    i= ,...,n+= −x x  , therefore all odd powered terms are zero. Then, 

( )( ) ( )( )
2

1 1

1

1 . . .
2 i i

n T

u
i

D D H O T
n =

⇒ = +∑ x x
P h h

 

 (B.105) 

 where . . .H O T  are terms of order 4 and higher. 
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( ) ( )
2

1 , 1

1 . . .
2

T
n n

i i
u j k

i j k j k

x x H O T
n x x= = ==

  ∂ ∂ ⇒ = +   ∂ ∂  
∑ ∑

x xx x

h hP    (B.106) 

 But ( ) ( ) ( ) ( ) 1i i n i i n
j j k k  and        i= ,...,n+ += − = −x x x x     

( ) ( )

1 , 1

1 . . .
T

n n
i i

u j k
i j k j k

x x H O T
n x x= = ==

  ∂ ∂ ⇒ = +   ∂ ∂  
∑ ∑

x xx x

h hP    

( ) ( )( )
, 1 1

1 . . .
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n n Ti i
u j k

j k i j k

x x H O T
n x x= = ==

 ∂ ∂
⇒ = +  ∂ ∂ 

∑ ∑
x xx x

h hP    

, 1
. . .

T
n

u jk
j k j k

H O T
x x= ==

 ∂ ∂
⇒ = +  ∂ ∂ 

∑
x xx x

h hP P  

(B.107) 

 Then, the approximated covariance can be expressed as 

. . .T
u H O T⇒ = +P HPH  (B.108) 

where . . .H O T  are terms of order 4 and higher. 

 Comparing (B.93) and (B.108) it is concluded that the approximated covariance 

matrix, uP , matches the true covariance of y  up to the third order of the Taylor Series 

expansion if x  has zero-mean and a symmetric PDF. 

 Note: In the case that the PDF of x  is not symmetric, the odd-powered terms are 

different to 0, and in particular terms of power 3 are not zero anymore. Then, the 

approximations of the mean and covariance match the true mean and covariance 

up to order 2. 
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B.8.  The Scaled Unscented transformation 

Let n∈x   a random vector with mean x  and covariance matrix xxP . Let 

= +x x δx  where δx  is a zero-mean random vector with covariance matrix xxP . Then, a 

second random vector is defined by 

( )=y h x  (B.109) 

Then, 

( ) ( ) ( )
2 3

2 3
2 3

1 1 ...
2! 3!= = =

∂ ∂ ∂
= = + = + + + +

∂ ∂ ∂x x x x x x

h h hy h x h x δx h x δx δx δx
x x x

 

( ) 2 2 3 31 1 ...
2! 3!

= +∇ + ∇ + ∇ +y h x hδx hδx hδx  

(B.110) 

Noting that ( ) ( )1 1
1

...
jj

j j j
n nj

n

x x x x
x x =

=

 ∂ ∂ ∂
= ∇ = − + + − ∂ ∂ ∂ 

x x
x x

hδx hδx h
x

, the 

mean and covariance matrix of y  can be expressed as 

( ) 2 3 31 1 ...
2! 3!

E  = + ∇ + ∇ + xxy h x h P h δx  (B.111) 

( )( )TE  = − − yyP y y y y  (B.112) 

But, 

( ) ( )

( )

2 2 3 3

2 3 3

1 1 ...
2! 3!

1 1 ...
2! 3!

E

 − = +∇ + ∇ + ∇ + − 
 
  + ∇ + ∇ +   

xx

y y h x hδx hδx hδx

h x h P h δx
 (B.113) 
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( ) 2 2 3 3 2 3 31 1 1 1... ...
2! 3! 2! 3!

E  ⇒ − = ∇ + ∇ + ∇ + − ∇ − ∇ − xxy y hδx hδx hδx hP h δx  (B.114) 

( ) 2 2 2 3 3 3 31 1 1 1 ...
2! 2! 3! 3!

E  ⇒ − = ∇ + ∇ − ∇ + ∇ − ∇ + xxy y hδx hδx hP hδx h δx  (B.115) 

and 
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h δx δ x h h δx h h δx h

h δx P h h δx h h δx δx h
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(B.116) 

( ) ( ) ( )

{ }( )

( ) ( )

2 3 3 2

2 4 2 2 2 2

3 4 4 3

1 1
2 2

1
4
1 1 ...
3! 3!

TT T

T

TT

E E

E E E

E E

   ⇒ = ∇ ∇ + ∇ ∇ + ∇ ∇   

     + ∇ − − + ∇     

   + ∇ ∇ + ∇ ∇ +   

yy xx

xx xx xx

P h P h h δx h h δx h

h δx δx P P δx P h

h δx h h δx h

 (B.117) 

The Unscented transformation choose a set of ( )1p +  sigma points { }S = W, X , 

such that 
0

1
p

i
i

W
=

=∑ , such that they reflect certain properties of x. The first two statistical 

moments of y can be computed from the sigma points propagated trough the nonlinear 

function h as follows 

0

p

i i
i

W
=

=∑y Y   (B.118) 

where ( )i i= hY X , and 
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{ }{ }
0

p
T

i i i
i

W
=

= − −∑yyP y yY Y  (B.119) 

The SPs scaling methods attempt to overcome dimensional scaling effects by 

calculating the transformation of a scaled set of SPs of the form 

( )0 0
'

i i= +α −X X X X  (B.120) 

where 0 1< α <  (intended to minimize higher order effects). 

Any formulation should meet: 

i. yyP  is positive-definite ∀α  

ii. Second order accuracy in y  and yyP . 

Two formulations achieving these requirements are described below. 

a. Auxiliary random variable 

We consider the problem of estimating the mean z  and covariance zzP  of the auxiliary 

random vector z. It is related to x through the nonlinear equation: 

( ) ( )( ) ( ) ( ), , ,
+α − −

α µ = +
µ

h x x x h x
g x x h x  (B.121) 

where α  is a point scaling parameter and µ  is a is a normalization term which scales the 

transformed point about ( )h x  to the offset the effects of α . Because all SPs are 

propagated through the term ( )( )+ α −h x x x , the scaling effect of (B.120) is implicitly 
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achieved. To prove the second order accuracy of this form, we consider the role played 

by α  and µ . Taking a Taylor Series expansion of ( ), , ,⋅ ⋅ ⋅ ⋅g  about x , 

( ) ( )
2 3

2 2 3 31 1, , , ...
2 3!

α α α
α µ = +∇ + ∇ + ∇ +

µ µ µ
g x x h x h δx h δx h δx  (B.122) 

Then, 

( ) ( )
2 3

2 3 31 1, , , ...
2 3!

E Eα α   = α µ = + ∇ + ∇ +   µ µxxz g x x h x h P h δx  (B.123) 

These terms can be related directly to those of the Taylor Series expansion of y . 

If 2µ = α  , the expressions for y  and z  agree up to the second order. The ratio of the 

third and higher order terms of z  against y  scale geometrically with a common ratio of 

α . Since α  only affects the third and higher orders, its value can be chosen so that the 

scaling effects in the higher order terms are minimized. With a sufficiently small value of 

α , the same mean can be calculated as with the modified form of the unscented 

transformation. 

A similar result holds for the covariance. Let * = µzz yyP P . Taking expectations, 

( ) ( )

{ }( )

( ) ( )

2 3
* 2 3

4
2 4 2 2 2 2

2

4 4
3 4 4 3

1
2

1
4
1 1 ...
3! 3!

T T

T

TT
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E E E

E E

α α  = ∇ ∇ + ∇ ∇ µ µ

α      + ∇ − − + ∇     µ

α α   + ∇ ∇ + ∇ ∇ +   µ µ

zz xx

xx xx xx

P h P h h δx h

h δx δx P P δx P h

h δx h h δx h

 (B.124) 
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When 2µ = α , the expansion of *
zzP  agrees with yyP  up to the second order and the third 

and higher order terms scale with α .  

The auxiliary form of the unscented transformation simply applies the unscented 

transformation to the problem of estimating the mean and covariance of the auxiliary 

random variable. Given an n-dimensional random variable x   with mean x  and 

covariance xxP , a set of ( )1p +  SPs are chosen such that the mean and covariance of 

those points are x  and xxP  respectively. The unscented transformation is then 

( )( ) ( ) ( )2i

+α − −
= +

α

h x x h x
h x

X
Z  (B.125) 

with 

0

p

i i
i=
∑z = WZ  

{ }{ }* 2

0
=

p
T

i i i
i=

α − −∑zzP z zW Z Z  

(B.126) 

The auxiliary form is able to meet the requirements set out at the beginning of this 

section. However, it requires a change in the fundamental transformation system itself. 

We now show that it is possible to leave the original problem in place but apply a 

transformation to the sigma points themselves. 

b. The Scaled Unscented Transform 

The scaled unscented transform yields the same results as the auxiliary form, but 

without the need to modify the transformation (B.109). Rather, an initial set of points are 

 



www.manaraa.com

524 
 

chosen using a normal sigma point selection algorithm. A specific transformation is 

applied to these points. The mean and covariance are calculated using (B.118) and 

(B.119). A final term is added to offset the initial transformation which was applied to the 

sigma points. 

Suppose a set of sigma points { }S = W, X  have been constructed with mean x  and 

covariance and a positive scaling parameter 0α >  has been chosen. These points are 

transformed to a new set { }S' = W', X'  which has the same mean and covariance as S  but 

the points now obey the condition of (B.120). As a result, the weights of this transformed 

sequence are 

0
2 2

'

2

11 0

0
i

i

W i
W

W i

  + − = α α = 
 ≠α

 (B.127) 

Proof: 

Normalization and covariance conditions of S : 

0
1

p

i
i

W
=

=∑           { }{ }
1

p
T

i i i
i

W
=

= − −∑xxP x xX X           ( )0 = xX  (B.128) 

Normalization and covariance conditions of S' : 

0
' 1

p

i
i

W
=

=∑          { }{ }
1

' ' '
p T

i i i
i

W
=

= − −∑xxP x xX X         ( )0
' = xX  (B.129) 

 But ( ) ( )0 0
'

i i i= +α − = +α −x xX X X X X . Then the covariance conditions 

imply 
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( ){ } ( ){ } { }{ }
1 1

'
p pT T

i i i i i i
i i

W W
= =

⇒ +α − − +α − − = − −∑ ∑x x x x x x x xX XX X  

( )( ) { }{ }2

1 1

'
p pT T

i i i i i i
i i

W W
= =

⇒ α − − = − −∑ ∑x x x xX X X X  

2
' 0i

WW i⇒ = >
α

 

(B.130) 

and the normalization conditions yield 

2
0 0

0 1 1

'1
p p p

i i i
i i i

W W W W W
= = =

= = + = +α∑ ∑ ∑  (B.131) 

but 

0 0
0 1 1

' ' ' ' '1 1
p p p

i i i
i i i

W W W W W
= = =

= = + ⇒ = −∑ ∑ ∑  (B.132) 

then, 

( )2
0 0

'1 1W W⇒ = +α −  

0
0 2 2
' 11WW⇒ = + −

α α
 

(B.133) 

Because S'  is, itself, a sigma point set, it is possible with some selection 

algorithms to implicitly combine the scaling directly with the original sigma point 

selection. Given this set of points, the scaled unscented transform calculates its statistics 

as follows 

( )' '
i i= hY X  (B.134) 
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0

' ''
p

i i
i=
∑y = W Y  (B.135) 

{ }{ } ( ){ }{ }2
0 0

0

' ' ' ' ' '= ' ' 1 ' '
p T T

i i i
i=

− − + −α − −∑yyP y y y yW Y Y Y Y  (B.136) 

But ' =y z  and *' =yy zzP P  when 2µ = α . This has a number of important consequences. 

First, the scaled unscented transformation possesses all of the properties of the auxillary 

form. The predicted mean and covariance are accurate to the second order and '
yyP  is 

guaranteed to be positive semidefinite if all of the untransformed weights are non-

negative. Second, the numerical costs of this form are the same as with the unscaled 

unscented transform. Comparing (B.136) to (B.119), the only difference is that a term 

( )21−α  is added to the weight on the zero-th sigma point. Finally this form provides a 

very simple interpretation for α . When 1α = , (B.119) is recovered. 

c. Incorporating Higher Order Information 

Although the SPs in the general case only capture the first two moments of the sigma 

points (and so the first two moments of the Taylor Series expansion), the scaled 

unscented can be extended to include partial higher order information of the fourth order 

term in the Taylor Series expansion of the covariance. The fourth order term of (B.117) is 

{ }( )

( )

2 4 2 2 2 2

3 4

1
4

1
3!

T

T

E E E

E

     = ∇ − − + ∇     

 + ∇ ∇ 

xx xx xxA h δx δx P P δx P h

h δx h
 (B.137) 
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The term ( )2 2 2 T
∇ ∇xxhP h  can be calculated from the same set of sigma points 

which match the mean and covariance. From (B.110), 

2 3 3
0

1 1 ...
2 6

E  − = ∇ + ∇ + xxy h P h δxY  (B.138) 

Taking outer products: 

( )( ) ( )2 2 2
0 0

1 ...
4

TT− − = ∇ ∇ +xxy y h P hY Y  (B.139) 

Therefore, adding extra weighting to the contribution of the zero-th point, further 

higher order effects can be incorporated at no additional computational cost by rewriting 

(B.136) as 

{ }{ } ( ){ }{ }2
0 0

0

' ' ' ' ' '= ' ' 1 ' '
p T T

i i i
i=

− − + β+ −α − −∑yyP y y y yW Y Y Y Y  (B.140) 

In this form, 

( ){ }( )

( )

2 4 2 2 2 2

3 4

1 1
4
1
3!

T

T

E E E

E

     ∆ = ∇ − − + −β ∇     

 + ∇ ∇ 

xx xx xxA h δx δx P P δx P h

h δx h
 (B.141) 

In the case that x  is Gaussian, 4 23E   =  xxδx P  and then the error is 

( ) ( ) ( )2 2 2 3 412
3!

T TE  ∆ = −β ∇ ∇ + ∇ ∇ xxA h P h h δx h  (B.142) 

Under the assumption that no information about ( )⋅h  is used, this term is 

minimized when 2β = . 
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APPENDIX C: LINEAR REGRESSION KALMAN FILTERS 

The so-called Linear Regression Kalman Filters (LRKFs) linearize the process 

and measurement equations of the nonlinear state-space model by statistical linear 

regression of the functions through a number of regression points in state-space. These 

filters define the uncertainty due to linearization errors on the linearized process or 

measurement function as the sample covariance matrix of the deviations between the 

function values of the nonlinear and the linearized function in the regression points. 

C.1.  Statistical linear regression  

Let's consider a nonlinear vector function ( )=y g x  evaluated in r points (

( ) ( ),j jx y , 1,...,j r=  ) where ( ) ( )( )j j= gy x . Define the following weighted sample 

means 

( ) ( )

1

r
j j

m
j

W
=

=∑x x  (C.1) 

( ) ( )

1

r
j j

m
j

W
=

=∑y y  (C.2) 

where ( )j
mW =  mean weighting coefficient for point j, and the weighted sample 

covariance matrices 

528 
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( ) ( )( ) ( )( )
1

r Tj j j
c

j
W

=

= − −∑xxP x x x x  (C.3) 

( ) ( )( ) ( )( )
1

r Tj j j
c

j
W

=

= − −∑xyP x x y y  (C.4) 

( ) ( )( ) ( )( )
1

r Tj j j
c

j
W

=

= − −∑yyP y y y y  (C.5) 

where ( )j
cW =  covariance weighting coefficient for point j.  

A linear regression for y can be expressed by lr lr= +y A x b  such that it 

minimizes the sum of the squared errors between the function values of the nonlinear and 

linearized functions in the regression points 

( )
( ), 1

, , arg min
r

T
lr lr j j

j=
= ∑A b

A b e e  (C.6) 

in which 

( ) ( )( )j j
j = − +e A by x  (C.7) 

The solution of (C.6) is given by 

1 1 ;T
lr lr lr

− −= = = −xy yy yx yyA P P P P b Ay x  (C.8) 

The sample covariance matrix of the deviations je  is 

( )

( )( ) ( )( ) ( )( ) ( )( )
1

1

r
j T

c j j
j

r T
j j j j

lr lr
j

T T
lr lr lr lr

T
lr lr

W
=

=

=

   = − − − − − −   

= − − +

= −

∑

∑

ee

yy xy yx xx

ee yy xx

P e e

A A

P A P P A A P A

P P A P A

y y x x y y x x  (C.9) 
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C.2.  Nonlinear state-space model  

A nonlinear state-space model with additive white Gaussian noise can be written 

as 

( )
( )

1

1 1 1 1

k k k k

k k k k

+

+ + + +

= +

= +

x f x w

y h x v
 (C.10) 

with ( )~ ,k kw 0 QN  and ( )1 1~ ,k k+ +v 0 RN  

C.3.  Process update using LRKF  

LRKFs use the function values of r  regression points, |
j

k kx  ( 1,...,j r=  ), in state 

space to model the behavior of the process function in the “uncertainty region” around 

the updated state estimate |ˆ k kx . The regression points are chosen such that their weighted 

sample mean and weighted covariance matrix equal the state estimate |ˆ k kx  and its 

covariance matrix |k kP  

( ) ( )
| | |

1

ˆ
r

j j
k k k k m k k

j
W

=

= =∑x x x : weighted sample mean (C.11) 

( ) ( )( ) ( )( )| | | | |
1

ˆ ˆ
r Tj j j

k k c k k k k k k k k
j

W
=

= − −∑P x xx x : weighted sample covariance (C.12) 

The function values of the regression points are 

( ) ( )( )1| |
j j

k k k k k+ = fx x  (C.13) 

Using the results from Section C.1 (Statistical linear regression) and considering 

the following analogy 
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Section C.1. This section 
x xk 
y xk+1 
g fk 

Alr Fk 
blr bk 
xj ( )

|
j

k kx  
yj ( )

1|
j

k k+x  
Pee *

kQ  

we have 

( ) ( )( ) ( )( ) ( ) ( )( ) ( )( )
1

1| 1| | | | | | |
1 1

r rT Tj j j j j j
k c k k k k k k k k c k k k k k k k k

j j
W W

−

+ +
= =

   
= − − − −   
   
∑ ∑F x x x x x x x x  

( ) ( )( ) ( )( ) 1
1| 1| | | |

1

ˆ
r Tj j j

k c k k k k k k k k k k
j

W −
+ +

=

 
⇒ = − − 

 
∑F x Px x x  

(C.14) 

( ) ( )
1| | 1| |

1

ˆ
r

j j
k k k k k k m k k k k k

j
W+ +

=

= − = −∑b F F xx x x  (C.15) 

( ) ( )( ) ( )( ) ( ) ( )( ) ( )( )*
1| 1| 1| 1| | | | |

1 1

r rT Tj j j j j j T
k c k k k k k k k k k c k k k k k k k k k

j j
W W+ + + +

= =

 
= − − − − − 

 
∑ ∑Q F Fx x x x x x x x  

( ) ( )( ) ( )( )*
1| 1| 1| 1| |

1

r Tj j j T
k c k k k k k k k k k k k k

j
W + + + +

=

⇒ = − − −∑Q F P Fx x x x  

(C.16) 

Then, process update equations of LRKFs follow the linear KF equations 

(prediction step): 

( ) ( ) ( ) ( )
1| | | 1| | 1|

1 1

ˆ ˆ ˆ ˆ
r r

j j j j
k k k k k k k k k m k k k k k m k k

j j
W W+ + +

= =

= + = + − =∑ ∑x F x b F x F xx x  (C.17) 

*
1| |

T
k k k k k k k k+ = + +P F P F Q Q  (C.18) 



www.manaraa.com

532 
 

( ) ( )( ) ( )( )1| | 1| 1| 1| 1| |
1

r Tj j jT T
k k k k k k c k k k k k k k k k k k k k

j
W+ + + + +

=

= + − − − +∑P F P F F P F Qx x x x  

( ) ( )( ) ( )( )1| 1| 1| 1| 1|
1

ˆ ˆ
r Tj j j

k k c k k k k k k k k k
j

W+ + + + +
=

⇒ = − − +∑P x x Qx x  

C.4.  Measurement update using LRKF 

The LRKF evaluates the measurement function in r regression points ( )
1|

j
k k+x  in the 

“uncertainty region” around the predicted state estimate 1|ˆ k k+x . The ( )
1|

j
k k+x  are chosen such 

that their weighted sample mean and weighted sample covariance matrix are equal to the 

predicted state estimate and its covariance: 

( ) ( )
1| 1| 1|

1

ˆ
r

j j
k k k k m k k

j
W+ + +

=

= =∑x x x : weighted sample mean (C.19) 

( ) ( )( ) ( )( )
( ) ( )( ) ( )( )

1| 1| 1| 1| 1|
1

1| 1| 1| 1|
1

ˆ ˆ

r Tj j j
k k c k k k k k k k k

j

r Tj j j
c k k k k k k k k

j

W

W

+ + + + +
=

+ + + +
=

= − −

= − −

∑

∑

P

x x

x x x x

x x
: weighted sample covariance (C.20) 

The function values of the regression points thought the nonlinear function are: 

( ) ( )( )1 1 1|
j j

k k k k+ + += hy x  (C.21) 

( ) ( )
1| 1

1
ˆ

r
j j

k k m k
j

W+ +
=

=∑y y : estimated response (C.22) 

Using the results from Section C.1 (Statistical linear regression) and considering 

the following analogy 
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Section C.1. This section 
x xk+1 
y yk+1 
g hk+1 

Alr Hk+1 
blr dk+1 
xj ( )

1|
j

k k+x  
yj ( )

1
j

k+y  
Pee *

1k+R  

we have 

( ) ( )( ) ( )( )

( ) ( )( ) ( )( )

1 1 1| 1| 1|
1

1

1| 1| 1| 1|
1

ˆ
r Tj j j

k c k k k k k k k
j

r Tj j j
c k k k k k k k k

j

W

W

+ + + + +
=

−

+ + + +
=

 
= − − 
 

 
− − 

 

∑

∑

H yy x x

x x x x

 (C.23) 

( ) ( )( ) ( )( ) 1
1 1 1| 1| 1| 1|

1

ˆ ˆ
r Tj j j

k c k k k k k k k k k
j

W −
+ + + + + +

=

 
= − − 
 
∑H y x Py x  (C.24) 

1 1| 1 1|ˆk k k k k k+ + + += −d y H x  (C.25) 

( ) ( )
1 1 1 1|

1

ˆ
r

j j
k m k k k k

j
W+ + + +

=

= −∑d H xy  (C.26) 

( ) ( )( ) ( )( )
( ) ( )( ) ( )( )

*
1 1 1| 1 1| 1

1

1| 1| 1| 1| 1
1

ˆ ˆ
r Tj j j

k c k k k k k k k
j

r Tj j j T
c k k k k k k k k k

j

W

W

+ + + + + +
=

+ + + + +
=

= − − −

 
− − 

 

∑

∑

R y y H

H

y y

x x x x
 (C.27) 

( ) ( )( ) ( )( )* 1
1 1 1| 1 1| 1 1| 1

1

ˆ ˆ
r Tj j j T

k c k k k k k k k k k k
j

W −
+ + + + + + + +

=

= − − −∑R y y H P Hy y  (C.28) 
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Then, measurement update equations of LRKFs follow the linear KF equations 

(correction step): 

1| 1 1| 1 1ˆ ˆk k k k k k+ + + + += +x x K η  (C.29) 

( )1| 1 1 1 1|k k n n k k k k+ + × + + += −P I K H P  (C.30) 

where 

( ) ( )

1 1 1 1| 1

1 1 1| 1 1 1|
1

ˆ

ˆ ˆ

k k k k k k

r
j j

k k k k m k k k k
j

W

+ + + + +

+ + + + + +
=

= − −

= − − +∑

η y H x d

y H x H xy
 (C.31) 

( ) ( )
1 1 1| 1 1

1

ˆ
r

j j
k k k k k m k

j
W+ + + + +

=

= − = −∑η y y y y  (C.32) 

 ( ) ( )( ) ( )( )

*
1 1 1 1 1| 1

1 1| 1 1|
1

1
1 1| 1 1 1 1| 1

ˆ ˆ

T
k k k k k k k

r Tj j j
c k k k k k k

j

T T
k k k k k k k k k

W

+ + + + + +

+ + + +
=

−
+ + + + + + +

= + +

= − −

− + +

∑

S R R H P H

y y

H P H R H P H

y y  (C.33) 

( ) ( )( ) ( )( )1 1 1| 1 1| 1
1

ˆ ˆ
r Tj j j

k c k k k k k k k
j

W+ + + + + +
=

= − − +∑S y y Ry y  (C.34) 

 ( ) ( )( ) ( )( )

1
1 1| 1 1

1 1
1| 1| 1| 1| 1 1| 1

1

ˆ ˆ

T
k k k k k

r Tj j j
k k k k c k k k k k k k k

j
W

−
+ + + +

− −
+ + + + + + +

=

=

 
= − − 

 
∑

K P H S

P P x y Sx y
 (C.35) 

( ) ( )( ) ( )( ) 1
1 1| 1| 1 1| 1

1

ˆ ˆ
r Tj j j

k c k k k k k k k k
j

W −
+ + + + + +

=

 
= − − 
 
∑K x y Sx y  (C.36) 
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Case of parameter estimation for mechanics-based nonlinear FE model updating 

Nonlinear state-space model 

( )
1 1k k k

k k k k

− −= +

= +

θ θ w
y h x v

 (C.37) 

with 

( )1 1~ ,k k− −w 0 QN  and ( )~ ,k kv 0 RN  (C.38) 

Process update 

Since the process equation is 1 1k k k− −= +θ θ w : 

( ) ( )
1| |

j j
k k k k+ =ϑ ϑ : values of the regression points (C.39) 

1| |
ˆ ˆ

k k k k+ =θ θ  : predicted parameter estimate (C.40) 

1| |k k k k k+ = +θθ θθP P Q : predicted covariance estimate (C.41) 

Measurement update 

The function values of the regression points thought the nonlinear function are: 

( ) ( )( )1 1 1|
j j

k k k k+ + += hy ϑ  (C.42) 

( ) ( )( ) ( )( ) ( ) ( ) 11
1 1 1| 1| 1| 1| 1| 1|

1

ˆˆ
r T Tj j j

k c k k k k k k k k k k k k k
j

W
−−

+ + + + + + + +
=

 
= − − = 
 
∑ θy θθH y θ P P Py ϑ  (C.43) 

( ) ( )
1 1 1 1|

1

ˆ
r

j j
k m k k k k

j
W+ + + +

=

= −∑d H θy  (C.44) 
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( ) ( )( ) ( )( ) ( ) 1*
1 1 1| 1 1| 1 1| 1

1

ˆ ˆ
r Tj j j T

k c k k k k k k k k k k
j

W
−

+ + + + + + + +
=

= − − −∑ θθR y y H P Hy y  (C.45) 

1| 1 1| 1 1
ˆ ˆ

k k k k k k+ + + + += +θ θ K η  (C.46) 

( )1| 1 1 1 1|k k n n k k k k+ + × + + += −θθ θθP I K H P  (C.47) 

where 

( ) ( )
1 1 1| 1 1

1

ˆ
r

j j
k k k k k m k

j
W+ + + + +

=

= − = −∑η y y y y : innovation (C.48) 

( ) ( )( ) ( )( )1 1 1| 1 1| 1
1

ˆ ˆ
r Tj j j

k c k k k k k k k
j

W+ + + + + +
=

= − − +∑S y y Ry y  (C.49) 

( ) ( )( ) ( )( ) 1
1 1| 1| 1 1| 1

1

ˆ ˆ
r Tj j j

k c k k k k k k k k
j

W −
+ + + + + +

=

 
= − − 
 
∑K θ y Sϑ y  (C.50) 
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APPENDIX D: KALMAN-BASED FILTERS FOR 

NONLINEAR SYSTEMS 

D.1.  Linear Kalman Filter for state estimation  

Consider the linear state-space model 

1

1 1 1 1 1 1

k k k k k k

k k k k k k

+

+ + + + + +

= + +

= + +

x A x B u w
y C x D u v

 (D.1) 

 Alternatively, the model can be expressed as 

1

1 1 1 1 1

k k k k k

k k k k k

+

+ + + + +

= + +

= + +

x A x b w

y C x d v

 (D.2) 

where k k k=b B u   and  1 1 1k k k+ + +=d D u . 

The prediction-correction algorithm of the Kalman filter can be summarized as 

follows 

1| |ˆ ˆk k k k k k+ = +x A x b  ; 1| |
ˆ ˆ T

k k k k k k k+ = +xx xxP A P A Q  (D.3) 

( )1| 1 1| 1 1 1|ˆ ˆ ˆk k k k k k k k+ + + + + += + −x x K y y  ; 1| 1 1| 1 1| 1
ˆ ˆ ˆ T

k k k k k k k k+ + + + + += −xx xx yyP P K P K  (D.4) 

where 

1| 1 1| 1ˆ ˆk k k k k k+ + + += +y C x d  (D.5) 

1| 1 1| 1 1
ˆ ˆ T

k k k k k k k+ + + + += +yy xxP C P C R  (D.6) 

537 
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1| 1| 1
ˆ ˆ T

k k k k k+ + +=xy xxP P C  (D.7) 

( ) 1
1 1| 1|

ˆ ˆ
k k k k k

−

+ + += xy yyK P P  (D.8) 

D.2.  Kalman-based filters for nonlinear systems 

Consider the nonlinear state-space model used in parameter estimation problems 

of mechanics-based nonlinear FE models 

( )
1

1 1 1 1: 1 1,
k k k

g
k k k k k

+

+ + + + +

= +

= +

θ θ w

y h θ u v

 (D.9) 

A linearized version can be expressed by 

1

1 1 1 1 1 1

k k k

k k k k k k

+

+ + + + + +

= +

= + + +

θ θ w
y H θ d ρ v

 (D.10) 

where 1k+H , 1k+d , and 1k+ρ  vary depending on the linearization strategy. 

The vector 1k+ρ  represents errors related to the linearization of the measurement 

equation and this additional uncertainty is modeled by a zero-mean Gaussian distribution 

with covariance matrix *
1k+R . The linearized state-space model described by Eq. (D.10) is 

analogous to the linear state-space mode described by Eq. (D.2), and consequently can be 

solved using the KF algorithm presented in Section D.1. 

Comparing Eqs. (D.2) and (D.10) it is noted that in the linearized parameter 

estimation problem, the following relationships are satisfied: 

k =A I  (D.11) 

k =b 0  (D.12) 
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1 1k k+ +=C H  (D.13) 

1 1k k+ +=d d  (D.14) 

Extended Kalman filter (EKF) 

In the EKF the nonlinear measurement equation in Eq. (D.9) is linearized around 

the latest predicted parameter estimate ( 1|
ˆ

k k+θ ) using a first-order approximation of the 

Taylor series expansion of ( )1 1 1: 1, g
k k k+ + +h θ u , i.e. in the measurement equation of Eq. 

(D.10) 

( )1 1: 1
1

1
ˆ

,
T

g
k k

k

k k

+ +
+

+

∂
=

∂
θ

h θ u
H

θ



 (D.15) 

( )1 1| 1 1| 1 1| 1: 1 1 1|
ˆ ˆ ˆˆ , g

k k k k k k k k k k k k k+ + + + + + + + += − = −d y H θ h θ u H θ  (D.16) 

Then, the linearized version can be written as: 

( ) ( )

( )

1

1 1: 1
1 1 1 1| 1: 1

1

1 1: 1
1| 1

1

ˆ

ˆ

, ˆ ,

, ˆ

T

T

k k k

g
k k g

k k k k k k

k k

g
k k

k k k

k k

+

+ +
+ + + + +

+

+ +
+ +

+

= +

∂
= +

∂

∂
− +

∂

θ

θ

θ θ w

h θ u
y θ h θ u

θ

h θ u
θ v

θ







 

(D.17) 

Note that The EKF does not take into account the linearization errors, i.e., 

1 0k+ =ρ . 

Using the prediction-correction scheme [Eqs. (D.3) to (D.8)]) of the linear KF for 

the state-space model in Eq. (D.17): 
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1| |
ˆ ˆ

k k k k+ =θ θ  ; 1| |
ˆ ˆ

k k k k k+ = +θθ θθP P Q  (D.18) 

( )1| 1 1| 1 1 1|
ˆ ˆ ˆk k k k k k k k+ + + + + += + −θ θ K y y  ; 1| 1 1| 1 1| 1

ˆ ˆ ˆ T
k k k k k k k k+ + + + + += −θθ θθ yyP P K P K  (D.19) 

where 

1| 1 1|
ˆˆ k k k k k+ + +=y H θ ( )1 1| 1: 1 1 1|

ˆ ˆ, g
k k k k k k k+ + + + ++ −h θ u H θ

( )1 1| 1: 1
ˆ , g

k k k k+ + += h θ u
 (D.20) 

1| 1 1| 1 1
ˆ ˆ T

k k k k k k k+ + + + += +yy θθP H P H R  (D.21) 

1| 1| 1
ˆ ˆ T

k k k k k+ + +=θy θθP P H  (D.22) 

( ) 1
1 1| 1|

ˆ ˆ
k k k k k

−

+ + += θy yyK P P  (D.23) 

( )1 1: 1
1

1
ˆ

,
T

g
k k

k

k k

+ +
+

+

∂
=

∂
θ

h θ u
H

θ



 (D.24) 

Iterated Extended Kalman filter (IEKF) 

In the EKF ( )1 1 1, g
k k k+ + +h θ U  is linearized around 1|

ˆ
k k+θ , the best available 

estimate of 1k+θ  before 1k+y  is taken into account. The IEKF linearizes ( )1 ,k+ ⋅ ⋅h  around 

1| 1
ˆ

k k+ +θ , which is the corrected parameter estimate of 1k+θ  after 1k+y  is assimilated. This 

is achieved by an iterative procedure. First, the filter linearizes ( )1 ,k+ ⋅ ⋅h  around 0
1| 1

ˆ
k k+ +θ

(where the superscript indicates the iteration number), usually assumed equals to 1|
ˆ

k k+θ , 

and computes the updated parameter and parameter covariance estimates 1
1| 1

ˆ
k k+ +θ  and 

,1
1| 1

ˆ
k k+ +
θθP , respectively.  Then, the filter linearizes ( )1 ,k+ ⋅ ⋅h  around 1

1| 1
ˆ

k k+ +θ  and computes a 
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new updated parameter and parameter covariance estimates 2
1| 1

ˆ
k k+ +θ  and ,2

1| 1
ˆ

k k+ +
θθP , 

respectively. The iterative process finishes when the difference between two consecutive 

updated parameter estimates is less than a defined threshold (e.g., 1
1| 1 1| 1

ˆ ˆi i
k k k k

−
+ + + +− ≤ εθ θ ) 

or after a maximum number of iterations (Niter) is reached. 

Therefore, on each iteration i, 1
i
k+H  and 1

i
k+d  in the measurement equation of Eq. 

(D.10) can be expressed as: 

( )1 1: 1
1

1| 1
ˆ

,
T

g
k ki

k
i
k k

+ +
+

+ +

∂
=

∂
θ

h θ u
H

θ



 (D.25) 

( )1 1| 1 1 1| 1 1 1| 1 1: 1 1 1| 1
ˆ ˆ ˆˆ ,i i i i i g i

k k k k k k k k k k k k k=+ + + + + + + + + + + + += − −d y H θ h θ u H θ  (D.26) 

Following the same procedure as in the EKF, it is obtained that for each iteration 

i: 

1| |
ˆ ˆ

k k k k+ =θ θ  ; 1| |
ˆ ˆ

k k k k k+ = +θθ θθP P Q  (D.27) 

( )1
1| 1 1| 1 1 1| 1

ˆ ˆ ˆi i i
k k k k k k k k
+
+ + + + + + += + −θ θ K y y  ; ( ), 1 ,

1| 1 1| 1 1| 1 1
ˆ ˆ ˆ Ti i i i

k k k k k k k k
+

+ + + + + + += −θθ θθ yyP P K P K  (D.28) 

where 

( )1| 1 1 1| 1 1: 1
ˆˆ ,i i g

k k k k k k+ + + + + +=y h θ u  (D.29) 

( ), ,
1| 1 1 1| 1 1 1

ˆ ˆ Ti i i i
k k k k k k k+ + + + + + += +yy θθP H P H R  (D.30) 

( ), ,
1| 1 1| 1 1

ˆ ˆ Ti i i
k k k k k+ + + + +=θy θθP P H  (D.31) 

( ) 1, ,
1 1| 1 1| 1

ˆ ˆi i i
k k k k k

−

+ + + + += θy yyK P P  (D.32) 
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( )1 1: 1
1

1| 1
ˆ

, g
k ki

k T
i
k k

+ +
+

+ +

∂
=

∂
θ

h θ u
H

θ



 (D.33) 

Unscented Kalman filter (UKF) 

The UKF evaluates the nonlinear measurement equation around the predicted 

parameter estimate 1|
ˆ

k k+θ  in a set of ( )2 1nθ +  regression points ( )
1|

i
k k+ϑ  ( 1, , 2 1i nθ= + ), 

referred to as sigma points (SPs). The SPs are deterministically chosen such that their 

sample mean and covariance matrix are equal to the predicted parameter estimate ( 1|
ˆ

k k+θ ) 

and the predicted parameter covariance matrix estimate ( 1|
ˆ

k k+
θθP ), respectively. The SPs are 

propagated through the nonlinear measurement function yielding: 

( ) ( )( )1 1: 11 1| ,i i g
k kk k k+ ++ += h uy ϑ  (D.34) 

The UKF uses a linearized measurement equation with 1k+H , 1k+d , and 1
m
k+ρ  

obtained by statistical linear regression (Lefebvre et al. 2005) though the pairs

( ) ( )( )1| 1,i i
k k k+ +ϑ y , 1, , 2 1i nθ= + . This statistical linear regression is defined to minimize 

the difference ( ie ) between the nonlinear and linearized functions evaluated in the SPs in 

a least-squares sense: 

( ) ( )( )1 1|
i i

i k k k+ += −e H + dy ϑ  (D.35) 

( )
( ),

2 1

1 1
1

, arg min T
n

k k i i
i

θ+

+ +
=

= ∑
H d

H d e e  (D.36) 

The solution of Eq. (D.36) is (Lefebvre et al. 2005): 
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( ) ( ) 1

1 1| 1|
ˆ ˆT

k k k k k
−

+ + += θy θθH P P  (D.37) 

1 1| 1 1|
ˆˆk k k k k k+ + + += −d y H θ  (D.38) 

where 1|
ˆ

k k+ =θθP  predicted parameter covariance estimate computed as a weighted sample 

covariance of ( )
1|

i
k k+ϑ , 1|

ˆ
k k+ =θyP  predicted cross-covariance estimate computed as the 

weighted sample covariance of ( )
1|

i
k k+ϑ  and ( )

1
i
k+y , and 1|

ˆ
k k+ =θ  predicted parameter 

estimate computed as a weighted sample mean of ( )
1|

i
k k+ϑ . The sample covariance of ie  

provides a measure of the magnitude of the linearization errors: 

*
1 1| 1 1| 1

ˆ ˆ T
k k k k k k k+ + + + += −yy θθR P H P H  (D.39) 

in which 1|
ˆ

k k+ =yyP  predicted output covariance estimate computed as a weighted sample 

covariance of ( )
1

i
k+y , 1, , 2 1i nθ= + . Further details on the mathematical derivation of 

the UKF as the solution of a statistical linearization problem can be found in Lefebvre et 

al. 2005. 

Then, the linearized version can be written as: 

( ) ( ) ( )1

1

1 1| 1| 1 1| 1 1| 1 1
ˆˆ ˆ ˆ

T

k k k

k k k k k k k k k k k k k
−

+

+ + + + + + + + +

= +

= + − + +θy θθ

θ θ w

y P P θ y H θ ρ v
 (D.40) 

Using the prediction-correction scheme [Eqs. (D.3) to (D.8)] of the linear KF for 

the state-space model in Eq. (D.40): 

1| |
ˆ ˆ

k k k k+ =θ θ  ; 1| |
ˆ ˆ

k k k k k+ = +θθ θθP P Q  (D.41) 

( )1| 1 1| 1 1 1|
ˆ ˆ ˆk k k k k k k k+ + + + + += + −θ θ K y y  ; 1| 1 1| 1 1| 1
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